• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cooperative perception : Application in the context of outdoor intelligent vehicle systems / Perception coopérative : application au contexte des systèmes de véhicules intelligents à l'extérieur

Li, Hao 21 September 2012 (has links)
Le thème de recherche de cette thèse est la perception coopérative multi-véhicules appliquée au contexte des systèmes de véhicules intelligents. L’objectif général des travaux présentés dans cette thèse est de réaliser la perception coopérative de plusieurs véhicules (dite « perception coopérative »), visant ainsi à fournir des résultats de perception améliorés par rapport à la perception d’un seul véhicule (ou « perception non-coopérative »). Au lieu de concentrer nos recherches sur la performance absolue de la perception coopérative, nous nous concentrons sur les mécanismes généraux qui permettent la réalisation de la localisation coopérative et de la cartographie de l’environnement routier (y compris la détection des objets), considérant que la localisation et la cartographie sont les deux tâches les plus fondamentales pour un système de véhicule intelligent. Nous avons également exploité la possibilité d’explorer les techniques de la réalité augmentée, combinées aux fonctionnalités de perception coopérative. Nous baptisons alors cette approche « réalité augmentée coopérative ». Par conséquent, nous pouvons d’ores et déjà annoncer trois contributions des travaux présentés: la localisation coopérative, la cartographie locale coopérative, et la réalité augmentée coopérative. / The research theme of this dissertation is the multiple-vehicles cooperative perception (or cooperative perception) applied in the context of intelligent vehicle systems. The general methodology of the presented works in this dissertation is to realize multiple-intelligent vehicles cooperative perception, which aims at providing better vehicle perception result compared with single vehicle perception (or non-cooperative perception). Instead of focusing our research works on the absolute performance of cooperative perception, we focus on the general mechanisms which enable the realization of cooperative localization and cooperative mapping (and moving objects detection), considering that localization and mapping are two underlying tasks for an intelligent vehicle system. We also exploit the possibility to realize certain augmented reality effect with the help of basic cooperative perception functionalities; we name this kind of practice as cooperative augmented reality. Naturally, the contributions of the presented works consist in three aspects: cooperative localization, cooperative local mapping and moving objects detection, and cooperative augmented reality.
2

Adaptive solutions for data sharing in vehicular networks / Solutions adaptatives pour le partage de données dans les réseaux de véhicules

Pimenta de Moraes Junior, Hermes 04 May 2018 (has links)
Dans le cadre des systèmes de transport intelligents (STI), les véhicules peuvent avoir beaucoup de capteurs (caméras, lidars, radars, etc.) et d’applications (évitement des collisions, surveillance du trafic, etc.) générant des données. Ils représentent alors une source d’information importante. Les applications locales peuvent augmenter considérablement leur efficacité en partageant une telle information au sein du réseau. La précision des données, la confiance et la pertinence peuvent être vérifiées lors de la réception de données provenant d’autres nœuds. Par conséquent, nous croyons qu’une question importante à répondre dans ce contexte est: “Comment partager efficacement les données dans un tel environnement?” Le partage de données est une tâche complexe dans les réseaux dynamiques. De nombreuses problèmes telles que les connexions intermittentes, la variation de la densité du réseau et la congestion du médium de communication se posent. Une approche habituelle pour gérer ces problèmes est basée sur des processus périodiques. En effet, un message envoyé plusieurs fois peut atteindre sa destination même avec des connexions intermittentes et des réseaux à faible densité. Néanmoins, dans les réseaux à haute densité, ils peuvent entraîner une congestion du médium de communication. Dans cette thèse, nous abordons le problème du partage de données dans des réseaux dynamiques en nous appuyant sur des horizons de pertinence. Un horizon est défini comme une zone dans laquelle une information devrait être reçue. Nous commençons par nous concentrer sur le partage de données au sein des voisins directs (à 1 saut de distance). Ensuite, nous proposons une solution pour construire une carte des voisins, centrée sur le nœud ego, dans un horizon à n sauts. Enfin, nous relâchons la définition de l’horizon pour la définir de façon dynamique, où différents éléments de données peuvent atteindre des distances différentes (sauts). En ce qui concerne la solution pour les horizons à 1 saut, notre technique adaptative prend en compte la dynamique des nœuds et la charge du réseau. Afin d’assurer une diffusion efficace des données dans différents scénarios, la fréquence d’envoi des messages est définie en fonction des mouvements des véhicules et d’une estimation du taux de perte du réseau. Après, nous nous concentrons sur la carte des voisins jusqu’à n sauts de distance. Comme la communication avec des nœuds éloignés apporte des problèmes supplémentaires (actions de transfert, retards plus importants, informations périmées), une évaluation de confiance des nœuds identifiés et une estimation de fiabilité du chemin vers chaque voisin sont ajoutées à la carte. Au lieu d’exécuter des processus de diffusion séparés, notre troisième contribution porte sur une stratégie de coopération dont l’objectif principal est de diffuser des données tout en satisfaisant la plupart des nœuds. À cette fin, une trame unique est transmise de nœud en nœud. Sa charge utile est mise à jour localement afin qu’elle contienne les éléments de données les plus pertinents en fonction de certains critères (par exemple, urgence, pertinence). Une telle stratégie définit ainsi un horizon centré sur les données. Nous validons nos propositions au moyen d’émulations de réseaux réalistes. De toutes nos études et des résultats obtenus, nous pouvons affirmer que notre approche apporte des perspectives intéressantes pour le partage de données dans des réseaux dynamiques comme les VANET. / In the context of Intelligent Transportation Systems - ITS, vehicles may have a lot of sensors (e.g. cameras, lidars, radars) and applications (collision avoidance, traffic monitoring, etc.) generating data. They represent then an important source of information. Local applications can significantly increase their effectiveness by sharing such an information within the network. Data accuracy, confidence and pertinence can be verified when receiving data from other nodes. Therefore, we believe that an important question to answer in this context is: “How to efficiently share data within such an environment?” Data sharing is a complex task in dynamic networks. Many concerns like intermittent connections, network density variation and communication spectrum congestion arise. A usual approach to handle these problems is based on periodic processes. Indeed, a message sent many times can reach its destination even with intermittent connections and low density networks. Nevertheless, within high density networks, they may lead to communication spectrum scarcity. In this thesis we address the problem of data sharing in dynamic networks by relying in so-called horizons of pertinence. A horizon is defined as an area within which an information is expected to be received. We start focusing on data sharing within direct neighbors (at 1-hop of distance). Then we propose a solution to construct a map of neighbors, centered in the ego-node, within a horizon of n-hops. Finally, we relax the horizon definition to a dynamic defined one where different data items may reach different distances (hops). Regarding the solution for 1-hop horizons, our adaptive technique takes into account nodes’ dynamics and network load. In order to ensure an effective data dissemination in different scenarios, the sending messages frequency is defined according to vehicles movements and an estimation of the network loss rate. Following, we focus on the map of neighbors up to n-hops of distance. As communicationwith distant nodes brings additional concerns (forwarding actions, larger delays, out-of-date information), a trust evaluation of identified nodes and a reliability estimation of the multi-hop path to each neighbor is added to the map. Instead of running separated disseminating processes, our third contribution deals with a cooperative strategy with the main goal of disseminating data while satisfying most of the nodes. For this purpose a unique frame is forwarded from node to node. Its payload is locally updated so that it contains the most relevant data items according to some criteria (e.g. urgency, relevance). Such a strategy defines thus a data-centered horizon. We validate our proposals by means of realistic network emulations. From all our studies and achieved results we can state that our approach brings interesting insights for data sharing in dynamic networks like VANETs.
3

Détection d'obstacles multi-capteurs supervisée par stéréovision

Perrollaz, Mathias 13 June 2008 (has links) (PDF)
Parmi les nouvelles technologies envisagées pour le développement d'aides à la conduite innovantes, la détection d'obstacles tient une place importante. Elle permet en effet d'anticiper d'éventuelles collisions, pour un gain réel en sécurité. Cette thèse propose d'aborder le thème de la détection d'obstacles par une approche multi-capteurs qui se veut robuste et générique, grâce au rôle central conféré à la stéréovision. Dans la méthodologie proposée, les différents capteurs (capteur stéréoscopique, télémètre laser, capteur d'identification optique) fournissent des hypothèses de détection sous la forme de volumes d'intérêt dans l'espace de disparité lié aux images stéréoscopiques. Un traitement localisé dans chacune de ces régions permet ensuite de valider et de caractériser ces hypothèses. Nous proposons dans cette thèse la description de cette méthodologie, trois méthodes de création d'hypothèses de détection et des critères pour la validation de celles-ci. Par ailleurs, des aspects pragmatiques liés à la mise en oeuvre de cette approche sont abordés, comme les choix algorithmiques permettant l'obtention en temps réel de données exploitables pour la stéréovision et l'évaluation des méthodes proposées. Enfin, nous présentons trois applications fonctionnant dans des véhicules expérimentaux et anticipant sur de futures aides à la conduite.

Page generated in 0.0974 seconds