• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding of the Nature of Science: A Comparative Study of Canadian and Korean Students

Park, Hyeran 18 December 2012 (has links)
This study was designed to identify students’ perceptions of learning activities, assessment formats, and content on their understanding of the nature of science (NOS) by comparing and examining constructs created by Canadian and Korean students. Participants were 217 Canadian and 319 Korean Grade 8 students that filled out questionnaires; additionally, 9 students volunteered for semi-structured interviews. Descriptive statistics, multivariate analysis of variance and partial least squares were used to examine the quantitative data. A conceptually clustered matrix was used for the qualitative analyses. Results indicated that students from both countries perceived 1) their learning activities were teacher-directed, 2) class presentations and discussions occurred least frequently, 3) paper-and-pencil tests determined science scores, 4) science tests relied heavily on knowledge of science while knowledge about science was least likely to be assessed, and 5) generally students held relativistic views on science. The effect for country on NOS concepts was statistically significant across all of their perceptions except for the concepts of culturally embedded science and the perceptions of short-answer test formats. Specifically, Canadian students perceived that they had relatively more student-directed activities while Korean students perceived that they had more teacher-directed science lab activities. Further, Canadian students were inclined to hold more relativistic views across the NOS concepts. It was also noted that Korean students provided more political examples while Canadian students provided stem cell research or environmental issues. An examination of associations revealed that students’ learning activities, assessment formats, and content are good predictors of NOS understanding since these constructs explain variances from 19.7% for Empirical NOS to 63% for Scientific Methods. Results from students’ open-ended responses to the NOS concepts and the semi-structured interviews were consistent with the quantitative analyses. Most interviewees agreed that what, and how, they learned science-- and how their learning was assessed--affected their views of science since school science education was the important factor in developing their scientific knowledge. These results imply that diverse learning activities and assessments could prove to be a better approach to enhancing students’ understanding of NOS than teacher-directed learning activities and test formats requiring a single correct answer.
2

Understanding of the Nature of Science: A Comparative Study of Canadian and Korean Students

Park, Hyeran 18 December 2012 (has links)
This study was designed to identify students’ perceptions of learning activities, assessment formats, and content on their understanding of the nature of science (NOS) by comparing and examining constructs created by Canadian and Korean students. Participants were 217 Canadian and 319 Korean Grade 8 students that filled out questionnaires; additionally, 9 students volunteered for semi-structured interviews. Descriptive statistics, multivariate analysis of variance and partial least squares were used to examine the quantitative data. A conceptually clustered matrix was used for the qualitative analyses. Results indicated that students from both countries perceived 1) their learning activities were teacher-directed, 2) class presentations and discussions occurred least frequently, 3) paper-and-pencil tests determined science scores, 4) science tests relied heavily on knowledge of science while knowledge about science was least likely to be assessed, and 5) generally students held relativistic views on science. The effect for country on NOS concepts was statistically significant across all of their perceptions except for the concepts of culturally embedded science and the perceptions of short-answer test formats. Specifically, Canadian students perceived that they had relatively more student-directed activities while Korean students perceived that they had more teacher-directed science lab activities. Further, Canadian students were inclined to hold more relativistic views across the NOS concepts. It was also noted that Korean students provided more political examples while Canadian students provided stem cell research or environmental issues. An examination of associations revealed that students’ learning activities, assessment formats, and content are good predictors of NOS understanding since these constructs explain variances from 19.7% for Empirical NOS to 63% for Scientific Methods. Results from students’ open-ended responses to the NOS concepts and the semi-structured interviews were consistent with the quantitative analyses. Most interviewees agreed that what, and how, they learned science-- and how their learning was assessed--affected their views of science since school science education was the important factor in developing their scientific knowledge. These results imply that diverse learning activities and assessments could prove to be a better approach to enhancing students’ understanding of NOS than teacher-directed learning activities and test formats requiring a single correct answer.

Page generated in 0.1835 seconds