• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Perfectly Matched Layer (PML) for Finite Difference Time Domain (FDTD) Computations in Piezoelectric Crystals

Chagla, Farid 08 1900 (has links)
The Finite-Difference Time-Domain (FDTD) method has become a very powerful tool for the analysis of propagating electromagnetic waves. It involves the discretization of Maxwell's equations in both time and space that leads to a numerical solution of the wave propagation problem in the time domain. The technique's main benefits are that it permits the description of wave propagation in non-uniform media, it can easily accommodate a wide range of boundary conditions, and it can be used to model nonlinear effects as well as the wave behaviour near localized structures or material defects. In this study, we extend this technique to mechanical wave propagation in piezoelectric crystals. It is observed to give large reflection artefacts generated by the computational boundaries which interfere with the desired wave propagation. To solve this problem, the renowned absorbing boundary condition called perfectly matched layer (PML) is used. PML was first introduced in 1994 for electromagnetic wave propagation. Our research has further developed this idea for acoustic wave propagation in piezoelectric crystals. The need to improve the large reflection artefacts by introducing a finite thickness PML has reduced acoustic wave reflection occurring due to practical errors to less than 0.5 %. However, it is found that PML can generate numerical instabilities in the calculation of acoustic fields in piezoelectric crystals. Theses observations are also discussed in this report. / Thesis / Master of Applied Science (MASc)

Page generated in 0.0885 seconds