• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 11
  • 11
  • 11
  • 11
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Performance-Based Procedure to Predict Liquefaction-Induced Free-Field Settlements for the Cone Penetration Test

Hatch, Mikayla Son 01 June 2017 (has links)
Liquefaction-induced settlements can cause a large economic toll on a region, from severe infrastructural damage, after an earthquake occurs. The ability to predict, and design for, these settlements is crucial to prevent extensive damage. However, the inherent uncertainty involved in predicting seismic events and hazards makes calculating accurate settlement estimations difficult. Currently there are several seismic hazard analysis methods, however, the performance-based earthquake engineering (PBEE) method is becoming the most promising. The PBEE framework was presented by the Pacific Earthquake Engineering Research (PEER) Center. The PEER PBEE framework is a more comprehensive seismic analysis than any past seismic hazard analysis methods because it thoroughly incorporates probability theory into all aspects of post-liquefaction settlement estimation. One settlement estimation method, used with two liquefaction triggering methods, is incorporated into the PEER framework to create a new PBEE (i.e., fully-probabilistic) post-liquefaction estimation procedure for the cone penetration test (CPT). A seismic hazard analysis tool, called CPTLiquefY, was created for this study to perform the probabilistic calculations mentioned above. Liquefaction-induced settlement predictions are computed for current design methods and the created fully-probabilistic procedure for 20 CPT files at 10 cities of varying levels of seismicity. A comparison of these results indicate that conventional design methods are adequate for areas of low seismicity and low seismic events, but may significantly under-predict seismic hazard for areas and earthquake events of mid to high seismicity.
2

Development of a Performance-Based Procedure for Assessment of Liquefaction-Induced Free-Field Settlements

Peterson, Brian David 01 December 2016 (has links)
Liquefaction-induced settlement can cause significant damage to structures and infrastructure in the wake of a seismic event. Predicting settlement is an essential component of a comprehensive seismic design. The inherent uncertainty associated with seismic events makes the accurate prediction of settlement difficult. While several methods of assessing seismic hazards exist, perhaps the most promising is performance-based earthquake engineering, a framework presented by the Pacific Earthquake Engineering Research (PEER) Center. The PEER framework incorporates probability theory to generate a comprehensive seismic hazard analysis. Two settlement estimation methods are incorporated into the PEER framework to create a fully probabilistic settlement estimation procedure. A seismic hazard analysis tool known as PBLiquefY was updated to include the fully probabilistic method described above. The goal of the additions to PBLiquefY is to facilitate the development of a simplified performance-based procedure for the prediction of liquefaction-induced free-field settlements. Settlement estimations are computed using conventional deterministic methods and the fully probabilistic procedure for five theoretical soil profiles in 10 cities of varying seismicity levels. A comparison of these results suggests that deterministic methods are adequate when considering events of low seismicity but may result in a considerable under-estimation of seismic hazard when considering events of mid to high seismicity.
3

Experimental and financial investigations into the further development of Damage Avoidance Design

Solberg, Kevin Mark January 2007 (has links)
Multiple experimental and computational tests are performed on precast concrete structures designed for damage avoidance. These structures accommodate non-linear behaviour by rocking at specially detailed connections. Unbonded prestress is employed to provide a restoring force and supplemental devices are used to dissipate energy. Tests are performed on a 30 percent scale bridge pier and an 80 percent scale 3D beam-column joint subassembly. Several detailing strategies are developed and tested. Straight and draped tendon profiles are considered. Supplemental energy dissipation is provided by yielding mild steel devices or lead-extrusion dampers. The lead-extrusion dampers are tested both externally and internally. Detailing at the joint region is refined in an effort to provide a cost-effective and simple solution. A closure pour is considered to simply the construction process. Results indicate it is possible to eliminate virtually all damage at the beam-column joint with minor increased cost from steel armouring. The lead-extrusion damper is shown to be 'resetable', and therefore would not have to be replaced following a seismic event. Two seismic financial risk methodologies are developed to investigate the enhanced performance inherent to ductile jointed structures. A rapid method is introduced which simplifies the intensive computational effort necessary to perform loss studies. A distribution-free computational method is also examined. The methods are demonstrated with a case study of bridge piers designed to different seismic design codes and a bridge designed for damage avoidance. The bridge pier designed for damage avoidance is shown to have an expected annual loss of approximately 25 percent that of the conventional ductile piers.
4

Relative Performance Comparison and Loss Estimation of Seismically Isolated and Fixed-based Buildings Using PBEE Approach

Sayani, Prayag J 01 December 2009 (has links)
Current design codes generally use an equivalent linear approach for preliminary design of a seismic isolation system. The equivalent linear approach is based on effective parameters, rather than physical parameters of the system, and may not accurately account for the nonlinearity of the isolation system. The second chapter evaluates an alternative normalized strength characterization against the equivalent linear characterization. Following considerations for evaluation are included: (1) ability to effectively account for variations in ground motion intensity, (2) ability to effectively describe the energy dissipation capacity of the isolation system, and (3) conducive to developing design equations that can be implemented within a code framework. Although current code guidelines specify different seismic performance objectives for fixed-base and isolated buildings, the future of performance-based design will allow user-selected performance objectives, motivating the need for a consistent performance comparison of the two systems. Based on response history analysis to a suite of motions, constant ductility spectra are generated for fixed-base and isolated buildings in chapter three. Both superstructure force (base shear) and deformation demands in base-isolated buildings are lower than in fixed-base buildings responding with identical deformation ductility. To compare the relative performance of many systems or to predict the best system to achieve a given performance objective, a response index is developed and used for rapid prototyping of response as a function of system characteristics. When evaluated for a life safety performance objective, the superstructure design base shear of an isolated building is competitive with that of a fixed-base building with identical ductility, and the isolated building generally has improved response. Isolated buildings can meet a moderate ductility immediate-occupancy objective at low design strengths whereas comparable ductility fixed-base buildings fail to meet the objective. In chapter four and five, the life cycle performance of code-designed conventional and base-isolated steel frame buildings is evaluated using loss estimation methodologies. The results of hazard and structural response analysis for three-story moment resisting frame buildings are presented in this paper. Three-dimensional models for both buildings are created and seismic response is assessed for three scenario earthquakes. The response history analysis results indicate that the performance of the isolated building is superior to the conventional building in the design event. However, for the Maximum Considered Earthquake, the presence of outliers in the response data reduces confidence that the isolated building provides superior performance to its conventional counterpart. The outliers observed in the response of the isolated building are disconcerting and need careful evaluation in future studies.
5

Development of a Simplified Performance-Based Procedure for Assessment of Liquefaction Triggering for the Cone Penetration Test

Blonquist, Jenny Lee 06 April 2020 (has links)
Soil liquefaction can cause devastating damage and loss and is a serious concern in civil engineering practice. One method for evaluating liquefaction triggering potential is a risk-targeted probabilistic approach that has been shown to provide more consistent and accurate estimates of liquefaction risk than traditional methods. This approach is a “performance-based” procedure which is based off of the performance-based earthquake engineering (PBEE) framework developed by the Pacific Earthquake Engineering Research (PEER) Center. Unfortunately, due to its complexity, performance-based liquefaction assessment is not often used in engineering practice. However, previous researchers have developed a simplified performance-based procedure which incorporates the accuracy and benefits of a full performance-based procedure while maintaining a more simplistic and user-friendly approach. Until now, these simplified performance-based procedures have only been available for the SPT (Standard Penetration Test). With the increasing popularity of the CPT (Cone Penetration Test), a simplified procedure is needed for CPT-based liquefaction assessment. This thesis presents the derivation of a simplified performance-based procedure for evaluating liquefaction triggering using the Ku et al. (2012) and Boulanger and Idriss (2014) models. The validation study compares the results of the simplified and full performance-based procedures. The comparison study compares the accuracy of the simplified performance-based and traditional pseudo-probabilistic procedures. These studies show that the simplified performance-based procedure provides a better and more consistent approximation of the full performance-based procedure than traditional methods. This thesis also details the development of the liquefaction loading maps which are an integral part of the simplified method.
6

Development of a Simplified Performance-Based Procedure for Assessment of Post-Liquefaction Settlement Using the Cone Penetration Test

He, Jingwen 01 July 2019 (has links)
Earthquake-induced liquefaction can cause severe damage to infrastructure is a serious concern in civil engineering practice. Post-liquefaction settlement is one of the common effects of liquefaction. The ability to predict and quantify post-liquefaction free-field settlement is a crucial part of seismic design. Many approaches have been developed during the past 50 years to perform liquefaction hazard analysis. The performance-based earthquake engineering (PBEE) framework developed by the Pacific Earthquake Engineering Research (PEER) center is a probabilistic framework that can provide a more accurate and complete seismic hazard analysis than other traditional methods. However, the PBEE framework is not widely used in routine projects due to its complexity.Previous researches have been performed to develop simplified performance-based procedures that can combine the simplicity of a traditional method and the accuracy of the full performance-based method. Unfortunately, these simplified performance-based procedures are only available for SPT. With the increase use of CPT, there is a need to develop simplified performance-based procedures for CPT. This study develops simplified performance-based procedures for the assessment of post-liquefaction free-field settlement for CPT, using the Boulanger and Idriss (2014) and the Ku et al. (2012) triggering models. The Juang et al. (2013) model, which is a probabilistic version of the Ishihara and Yoshimine (1992) model, is used in this study to performance free-field settlement calculations. The simplified procedure is based on the idea of liquefaction reference parameter maps. Reference values obtained from these parameter maps are then adjusted, using correction equations, to site-specific conditions. This study presents the deviations of the correction equations for the simplified performance-based procedure. The simplified procedure will then be validated in which 18 cities across the United States are analyzed using both the simplified procedure and the full performance-based procedure. The simplified performance-based procedure is shown to reasonably estimate the results of the full performance-based procedure. Finally, a study is performed to compare the accuracy and consistency of the simplified performance-based and the conventional pseudo-probabilistic procedures. The simplified performance-based procedure is found to provide better approximations of the full performance-based procedure with more consistency and precision.
7

Performance-Based Liquefaction Triggering Analyses with Two Liquefaction Models Using the Cone Penetration Test

Arndt, Alex Michael 01 August 2017 (has links)
This study examines the use of performance-based engineering in earthquake liquefaction hazard analysis with Cone Penetration Test data (CPT). This work builds upon previous research involving performance-based liquefaction analysis with the Standard Penetration Test (SPT). Two new performance-based liquefaction triggering models are presented herein. The two models used in this liquefaction analysis are modified from the case-history based probabilistic models proposed by Ku et al. (2012) and Boulanger and Idriss (2014). Using these models, a comparison is made between the performance-based method and the conventional pseudo-probabilistic method. This comparison uses the 2014 USGS probabilistic seismic hazard models for both methods. The comparison reveals that, although in most cases both methods predict similar liquefaction hazard using a factor of safety against liquefaction, by comparing the probability of liquefaction, the performance-based method on average will predict a smaller liquefaction hazard.
8

Performance-Based Seismic Monitoring of Instrumented Buildings

Roohi, Milad 01 January 2019 (has links)
This dissertation develops a new concept for performance-based monitoring (PBM) of instrumented buildings subjected to earthquakes. This concept is achieved by simultaneously combining and advancing existing knowledge from structural mechanics, signal processing, and performance-based earthquake engineering paradigms. The PBM concept consists of 1) optimal sensor placement, 2) dynamic response reconstruction, 3) damage estimation, and 4) loss analysis. Within the proposed concept, the main theoretical contribution is the derivation of a nonlinear model-based observer (NMBO) for state estimation in nonlinear structural systems. The NMBO employs an efficient iterative algorithm to combine a nonlinear model and limited noise-contaminated response measurements to estimate the complete nonlinear dynamic response of the structural system of interest, in the particular case of this research, a building subject to an earthquake. The main advantage of the proposed observer over existing nonlinear recursive state estimators is that it is specifically designed to be physically realizable as a nonlinear structural model. This results in many desirable properties, such as improved stability and efficiency. Additionally, a practical methodology is presented to implement the proposed PBM concept in the case of instrumented steel, wood-frame, and reinforced concrete buildings as the three main types of structural systems used for construction in the United States. The proposed methodology is validated using three case studies of experimental and real-world large-scale instrumented buildings. The first case study is an extensively instrumented six-story wood frame building tested in a series of full-scale seismic tests in the final phase of the NEESWood project at the E-Defense facility in Japan. The second case study is a 6-story steel moment resisting frame building located in Burbank, CA, and uses the recorded acceleration data from the 1991 Sierra Madre and 1994 Northridge earthquakes. The third case is a seven-story reinforced concrete structure in Van Nuys, CA, which was severely damaged during the 1994 Northridge earthquake. The results presented in this dissertation constitute the most accurate and the highest resolution seismic response and damage measure estimates obtained for instrumented buildings. The proposed PBM concept will help structural engineers make more informed and swift decisions regarding post-earthquake assessment of critical instrumented building structures, thus improving earthquake resiliency of seismic-prone communities.
9

Development of a Simplified Performance-Based Procedure for Assessment of Liquefaction Triggering Using Liquefaction Loading Maps

Ulmer, Kristin Jane 01 July 2015 (has links) (PDF)
Seismically-induced liquefaction has been the cause of significant damage to infrastructure and is a serious concern in current civil engineering practice. Several methods are available for assessing the risk of liquefaction at a given site, each with its own strengths and limitations. One probabilistic method has been shown to provide more consistent estimates of liquefaction risk and can be tailored to the specific needs of a given project through hazard-targeted (i.e. based on return periods or likelihoods) results. This type of liquefaction assessment is typically called “performance-based,” after the Pacific Earthquake Engineering Research (PEER) Center's performance-based earthquake engineering framework. Unfortunately, performance-based liquefaction assessment is not easily performed and can be difficult for practicing engineers to use on routine projects. Previous research has shown that performance-based methods of liquefaction assessment can be simplified into an approximation procedure. This simplification has successfully been completed for the Cetin et al. (2004) empirical, probabilistic standard penetration test -based liquefaction triggering model. Until now, such a simplification has not been performed for another popular liquefaction triggering model developed by Boulanger and Idriss (2012). As some engineers either wish to use or are required to use the Boulanger and Idriss (2012) model in their liquefaction assessments, there is a need for a simplified performance-based method based on this model to supplement that based on the Cetin et al. (2004) model. This thesis provides the derivation of a simplified performance-based procedure for the assessment of liquefaction triggering using the Boulanger and Idriss (2012) model. A validation study is performed in which 10 cities across the United States are analyzed using both the simplified procedure and the full performance-based procedure. A comparison of the results from these two analyses shows that the simplified procedure provides a reasonable approximation of the full performance-based procedure. This thesis also describes the development of liquefaction loading maps for six states and a spreadsheet that performs the necessary correction calculations for the simplified method.
10

Simplified Performance-Based Analysis for Seismic Slope Displacements

Astorga Mejia, Marlem Lucia 01 July 2016 (has links)
Millions of lives have been lost over the years as a result of the effects of earthquakes. One of these devastating effects is slope failure, more commonly known as landslide. Over the years, seismologists and engineers have teamed up to better record data during an earthquake. As technology has advanced, the data obtained have become more refined, allowing engineers to use the data in their efforts to estimate earthquakes where they have not yet occurred. Several methods have been proposed over time to utilize the earthquake data and estimate slope displacements. A pioneer in the development of methods to estimate slope displacements, Nathan Newmark, proposed what is now called the Newmark sliding block method. This method explained in very simple ways how a mass, in this case a rigid block, would slide over an incline given that the acceleration of the block surpassed the frictional resistance created between the bottom of the block and the surface of the incline. Because many of the assumptions from this method were criticized by scientists over time, modified Newmark sliding block methods were proposed. As the original and modified Newmark sliding block methods were introduced, the need to account for the uncertainty in the way soil would behave under earthquake loading became a big challenge. Deterministic and probabilistic methods have been used to incorporate parameters that would account for some of the uncertainty in the analysis. In an attempt to use a probabilistic approach in understanding how slopes might fail, the Pacific Earthquake Engineering Research Center proposed a performance-based earthquake engineering framework that would allow decision-makers to use probabilistically generated information to make decisions based on acceptable risk. Previous researchers applied this framework to simplified Newmark sliding block models, but the approach is difficult for engineers to implement in practice because of the numerous probability calculations that are required. The work presented in this thesis provides a solution to the implementation of the performance-based approach by providing a simplified procedure for the performance-based determination of seismic slope displacements using the Rathje & Saygili (2009) and the Bray and Travasarou (2007) simplified Newmark sliding block models. This document also includes hazard parameter maps, which are an important part of the simplified procedure, for five states in the United States. A validation of the method is provided, as well as a comparison of the simplified method against other commonly used approaches such as deterministic and pseudo-probabilistic.

Page generated in 0.1215 seconds