• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Quantification de la perfusion myocardique en imagerie de perfusion par résonance magnétique : modèles et classification non-supervisée / Myocardial perfusion quatification by magnetic resonance imaging : models and unsupervised classification

Daviller, Clément 18 October 2019 (has links)
Les maladies cardiovasculaires et en particulier les maladies coronariennes représentent la principale cause de mortalité mondiale avec 17,9 millions de décès en 2012. L’IRM cardiaque est un outil particulièrement intéressant pour la compréhension et l’évaluation des cardiopathies, notamment ischémiques. Son apport diagnostique est souvent majeur et elle apporte des informations non accessibles par d’autres modalités d’imagerie. Les travaux menés pendant cette thèse portent plus particulièrement sur l’examen dit de perfusion myocardique qui consiste à étudier la distribution d’un agent de contraste au sein du muscle cardiaque lors de son premier passage. En pratique clinique cet examen est souvent limité à la seule analyse visuelle du clinicien qui recherche un hyposignal lui permettant d’identifier l’artère coupable et d’en déduire le territoire impacté. Cependant, cette technique est relative et ne permet pas de quantifier le flux sanguin myocardique. Au cours de ces dernières années, un nombre croissant de techniques sont apparues pour permettre cette quantification et ce à toutes les étapes de traitement, depuis l’acquisition jusqu’à la mesure elle-même. Nous avons dans un premier temps établi un pipeline de traitement afin de combiner ces approches et de les évaluer à l’aide d’un fantôme numérique et à partir de données cliniques. Nous avons pu démontrer que l’approche Bayésienne permettait de quantifier la perfusion cardiaque et sa supériorité à évaluer le délai d’arrivé du bolus d’indicateur par rapport au modèle de Fermi. De plus l’approche Bayésienne apporte en supplément des informations intéressantes telles que la fonction de densité de probabilité de la mesure et l’incertitude sur la fonction résidu qui permettent de connaitre la fiabilité de la mesure effectuée notamment en observant la répartition de la fonction de densité de probabilité de la mesure. Enfin, nous avons proposé un algorithme de segmentation des lésions myocardiques, exploitant les dimensions spatiotemporelles des données de perfusion. Cette technique permet une segmentation objective et précise de la région hypoperfusée permettant une mesure du flux sanguin myocardique sur une zone de tissu dont le comportement est homogène et dont la mesure du signal moyen permet une augmentation du rapport contraste à bruit. Sur la cohorte de 30 patients, la variabilité des mesures du flux sanguin myocardique effectuées sur les voxels détectés par cette technique était significativement inférieure à celle des mesures effectuées sur les voxels des zones définies manuellement (différence moyenne=0.14, 95% CI [0.07, 0.2]) et de celles effectuées sur les voxels des zones définies à partir de la méthode bullseye (différence moyenne =0.25, 95% CI [0.17, 0.36]) / Cardiovascular diseases and in particular coronary heart disease are the main cause of death worldwide with 17.9 million deaths in 2012. Cardiac MRI is a particularly interesting tool for understanding and evaluating heart disease, including ischemic heart disease. Its diagnostic contribution is often major and it provides information that is not accessible by other imaging modalities. The work carried out during this thesis focuses more specifically on the so-called myocardium perfusion test, which consists in studying the distribution of a contrast agent within the heart muscle during its first passage. In clinical practice, this examination is often limited to the clinician's visual analysis, allowing him to identify the culprit artery and deduce the impacted territory. However, this technique is relative and does not quantify myocardial blood flow. In recent years, an increasing number of techniques have emerged to enable this quantification at all stages of processing, from acquisition to the measurement itself. We first established a treatment pipeline to combine these approaches and evaluate them using a digital phantom and clinical data. We demonstrated that the Bayesian approach is able to quantify myocardium perfusion and its superiority in evaluating the arrival time of the indicator bolus compared to the Fermi model. In addition, the Bayesian approach provides additional interesting information such as the probability density function of the measurement and the uncertainty of the residual function, which makes it possible to know the reliability of the measurement carried out, in particular by observing the distribution of the probability density function of the measurement. Finally, we proposed an algorithm for segmentation of myocardial lesions, using the spatial and temporal dimensions of infusion data. This technique allows an objective and precise segmentation of the hypoperfused region allowing a measurement of myocardial blood flow over an area of tissue which behavior is homogeneous and which average signal measurement allows an increase in the contrast-to-noise ratio. In the cohort of 30 patients, the variability of myocardial blood flow measurements performed on voxels detected by this technique was significantly lower than that of measurements performed on voxels in manually defined areas (mean difference=0.14, 95% CI[0.07, 0.2]) and those performed on voxels in areas defined using the bullseye method (mean difference=0.25, 95% CI[0.17, 0.36])
12

Approches variationnelles statistiques spatio-temporelles pour l'analyse quantitative de la perfusion myocardique en IRM / Spatio-temporal statistical variational models for the quantitative assessment of myocardial perfusion in magnetic resonance imaging

Hamrouni-Chtourou, Sameh 11 July 2012 (has links)
L'analyse quantitative de la perfusion myocardique, i.e. l'estimation d'indices de perfusion segmentaires puis leur confrontation à des valeurs normatives, constitue un enjeu majeur pour le dépistage, le traitement et le suivi des cardiomyopathies ischémiques --parmi les premières causes de mortalité dans les pays occidentaux. Dans la dernière décennie, l'imagerie par résonance magnétique de perfusion (IRM-p) est la modalité privilégiée pour l'exploration dynamique non-invasive de la perfusion cardiaque. L'IRM-p consiste à acquérir des séries temporelles d'images cardiaques en incidence petit-axe et à plusieurs niveaux de coupe le long du grand axe du cœur durant le transit d'un agent de contraste vasculaire dans les cavités et le muscle cardiaques. Les examens IRM-p résultants présentent de fortes variations non linéaires de contraste et des artefacts de mouvements cardio-respiratoires. Dans ces conditions, l'analyse quantitative de la perfusion myocardique est confrontée aux problèmes complexes de recalage et de segmentation de structures cardiaques non rigides dans des examens IRM-p. Cette thèse se propose d'automatiser l’analyse quantitative de la perfusion du myocarde en développant un outil d'aide au diagnostic non supervisé dédié à l'IRM de perfusion cardiaque de premier passage, comprenant quatre étapes de traitement : -1.sélection automatique d'une région d'intérêt centrée sur le cœur; -2.compensation non rigide des mouvements cardio-respiratoires sur l'intégralité de l'examen traité; -3.segmentation des contours cardiaques; -4.quantification de la perfusion myocardique. Les réponses que nous apportons aux différents défis identifiés dans chaque étape s'articulent autour d'une idée commune : exploiter l'information liée à la cinématique de transit de l'agent de contraste dans les tissus pour discriminer les structures anatomiques et guider le processus de recalage des données. Ce dernier constitue le travail central de cette thèse. Les méthodes de recalage non rigide d'images fondées sur l'optimisation de mesures d'information constituent une référence en imagerie médicale. Leur cadre d'application usuel est l'alignement de paires d'images par appariement statistique de distributions de luminance, manipulées via leurs densités de probabilité marginales et conjointes, estimées par des méthodes à noyaux. Efficaces pour des densités jointes présentant des classes individualisées ou réductibles à des mélanges simples, ces approches atteignent leurs limites pour des mélanges non-linéaires où la luminance au pixel s’avère être un attribut trop frustre pour permettre une décision statistique discriminante, et pour des données mono-modal avec variations non linéaires et multi-modal. Cette thèse introduit un modèle mathématique de recalage informationnel multi-attributs/multi-vues générique répondant aux défis identifiés: (i) alignement simultané de l'intégralité de l'examen IRM-p analysé par usage d'un atlas, naturel ou synthétique, dans lequel le cœur est immobile et en utilisant les courbes de rehaussement au pixel comme ensemble dense de primitives; et (ii) capacité à intégrer des primitives image composites, spatiales ou spatio-temporelles, de grande dimension. Ce modèle, disponible dans le cadre classique de Shannon et dans le cadre généralisé d'Ali-Silvey, est fondé sur de nouveaux estimateurs géométriques de type k plus proches voisins des mesures d'information, consistants en dimension arbitraire. Nous étudions leur optimisation variationnelle en dérivant des expressions analytiques de leurs gradients sur des espaces de transformations spatiales régulières de dimension finie et infinie, et en proposant des schémas numériques et algorithmiques de descente en gradient efficace. Ce modèle de portée générale est ensuite instancié au cadre médical ciblé, et ses performances, notamment en terme de précision et de robustesse, sont évaluées dans le cadre d'un protocole expérimental tant qualitatif que quantitatif / Quantitative assessment of moycardium perfusion, i.e. computation of perfusion parameters which are then confronted to normative values, is a key issue for the diagnosis, therapy planning and monitoring of ischemic cardiomyopathies --the leading cause of death in Western countries. Within the last decade, perfusion magnetic resonance imaging (p-MRI) has emerged as a reference modality for reliably assessing myocardial perfusion in a noninvasive and accurate way. In p-MRI acquisitions, short-axis image sequences are captured at multiple slice levels along the long-axis of the heart during the transit of a vascular contrast agent through the cardiac chambers and muscle. Resulting p-MRI exams exhibit high nonlinear contrast variations and complex cardio-thoracic motions. Perfusion assessment is then faced with the complex problems of non rigid registration and segmentation of cardiac structures in p-MRI exams. The objective of this thesis is enabling an automated quantitative computer-aided diagnosis tool for first pass cardiac perfusion MRI, comprising four processing steps: -1.automated cardiac region of interest extraction; -2.non rigid registration of cardio-thoracic motions throughout the whole sequence; -3.cardiac boundaries segmentation; -4.quantification of myocardial perfusion. The answers we give to the various challenges identified in each step are based on a common idea: investigating information related to the kinematics of contrast agent transit in the tissues for discriminating the anatomical structures and driving the alignment process. This latter is the main work of this thesis. Non rigid image registration methods based on the optimization of information measures provide versatile solutions for robustly aligning medical data. Their usual application setting is the alignment of image pairs by statistically matching luminance distributions, handled using marginal and joint probability densities estimated via kernel techniques. Though efficient for joint densities exhibiting well-separated clusters or reducible to simple mixtures, these approaches reach their limits for nonlinear mixtures where pixelwise luminance appears to be a too coarse feature for allowing unambiguous statistical decisions, and for mono-modal with nonlinear variations and multi-modal data. This thesis presents a unified mathematical model for the information-theoretic multi-feature/multi-view non rigid registration, addressing the identified challenges : (i) simultaneous registration of the whole p-MRI exam, using a natural or synthetic atlas generated as a motion-free exam depicting the transit of the vascular contrast agent through cardiac structures and using local contrast enhancement curves as a feature set; (ii) can be easily generalized to richer feature spaces combining radiometric and geometric information. The resulting model is based on novel consistent k-nearest neighbors estimators of information measures in high dimension, for both classical Shannon and generalized Ali-Silvey frameworks. We study their variational optimization by deriving under closed-form their gradient flows over finite and infinite dimensional smooth transform spaces, and by proposing computationally efficient gradient descent schemas. The resulting generic theoretical framework is applied to the groupwise alignment of cardiac p-MRI exams, and its performances, in terms of accuracy and robustness, are evaluated in an experimental qualitative and quantitative protocol

Page generated in 0.0758 seconds