• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Linear Time-Varying Systems: Modeling and Reduction

Sandberg, Henrik January 2002 (has links)
Linear time-invariant models are widely used in the control community. They often serve as approximations of nonlinear systems. For control purposes linear approximations are often good enough since feedback control systems are inherently robust to model errors. In this thesis some of the possibilities for linear time-varying modeling are studied. In the thesis it is shown that the balanced truncation procedure can be applied to reduce the order of linear time-varying systems. Many of the attractive properties of balanced truncation for time-invariant systems can be generalized into the time-varying framework. For example, it is shown that a truncated input-output stable system will be input-output stable, and computable simple worst-case error bounds are derived. The method is illustrated with model reduction of a nonlinear diesel exhaust catalyst model. It is also shown that linear time-periodic models can be used for analysis of systems with power converters. Power converters produce harmonics in the power grids and give frequency coupling that cannot be modeled with standard time-invariant linear models. With time-periodic models we can visualize the coupling and also use all the available tools for linear time-varying systems, such as balanced truncation. The method is illustrated on inverter locomotives. / QC 20120208

Page generated in 0.1074 seconds