• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In Vitro Macrophage Response to Nanometer-size Particles from Materials Used in Hip Implants

Vanos, Robilyn 09 August 2011 (has links)
Wear particle-induced inflammation leading to periprosthetic osteolysis remains a major cause of hip implant failure. As polyethylene particles from conventional metal-on-polyethylene implants have been associated with these failures, an interest in lower wear metal-on-metal (MM) bearings has emerged. However, the biological effects of nanometer-size chromium oxide particles, predominant type of wear particles produced by MM implants, remain mostly unknown. Therefore, this study aimed to determine the cytotoxicity of nanometer-size Cr2O3 particles on macrophages in vitro, by analyzing their effects on cell mortality and cytokine release and comparing them with those of similarly-sized alumina (Al2O3) particles (known to be relatively bioinert). Results showed that at high concentrations, nanometer-size Cr2O3 particles can be cytotoxic to macrophages, inducing significant decreases in total cell numbers and increases in necrosis. Results also showed that, at high concentrations, the cytotoxicity of Cr2O3 particles was overall higher than that of Al2O3 particles, even though Cr2O3 and Al2O3 are both stable forms of ceramic materials. However, it appeared to be lower than that of previously reported conventional polyethylene and CoCrMo particles. Therefore, chromium oxide particles may not be the main culprit in initiating the inflammatory reaction in MM periprosthetic tissues.
2

In Vitro Macrophage Response to Nanometer-size Particles from Materials Used in Hip Implants

Vanos, Robilyn 09 August 2011 (has links)
Wear particle-induced inflammation leading to periprosthetic osteolysis remains a major cause of hip implant failure. As polyethylene particles from conventional metal-on-polyethylene implants have been associated with these failures, an interest in lower wear metal-on-metal (MM) bearings has emerged. However, the biological effects of nanometer-size chromium oxide particles, predominant type of wear particles produced by MM implants, remain mostly unknown. Therefore, this study aimed to determine the cytotoxicity of nanometer-size Cr2O3 particles on macrophages in vitro, by analyzing their effects on cell mortality and cytokine release and comparing them with those of similarly-sized alumina (Al2O3) particles (known to be relatively bioinert). Results showed that at high concentrations, nanometer-size Cr2O3 particles can be cytotoxic to macrophages, inducing significant decreases in total cell numbers and increases in necrosis. Results also showed that, at high concentrations, the cytotoxicity of Cr2O3 particles was overall higher than that of Al2O3 particles, even though Cr2O3 and Al2O3 are both stable forms of ceramic materials. However, it appeared to be lower than that of previously reported conventional polyethylene and CoCrMo particles. Therefore, chromium oxide particles may not be the main culprit in initiating the inflammatory reaction in MM periprosthetic tissues.
3

In Vitro Macrophage Response to Nanometer-size Particles from Materials Used in Hip Implants

Vanos, Robilyn 09 August 2011 (has links)
Wear particle-induced inflammation leading to periprosthetic osteolysis remains a major cause of hip implant failure. As polyethylene particles from conventional metal-on-polyethylene implants have been associated with these failures, an interest in lower wear metal-on-metal (MM) bearings has emerged. However, the biological effects of nanometer-size chromium oxide particles, predominant type of wear particles produced by MM implants, remain mostly unknown. Therefore, this study aimed to determine the cytotoxicity of nanometer-size Cr2O3 particles on macrophages in vitro, by analyzing their effects on cell mortality and cytokine release and comparing them with those of similarly-sized alumina (Al2O3) particles (known to be relatively bioinert). Results showed that at high concentrations, nanometer-size Cr2O3 particles can be cytotoxic to macrophages, inducing significant decreases in total cell numbers and increases in necrosis. Results also showed that, at high concentrations, the cytotoxicity of Cr2O3 particles was overall higher than that of Al2O3 particles, even though Cr2O3 and Al2O3 are both stable forms of ceramic materials. However, it appeared to be lower than that of previously reported conventional polyethylene and CoCrMo particles. Therefore, chromium oxide particles may not be the main culprit in initiating the inflammatory reaction in MM periprosthetic tissues.
4

In Vitro Macrophage Response to Nanometer-size Particles from Materials Used in Hip Implants

Vanos, Robilyn January 2011 (has links)
Wear particle-induced inflammation leading to periprosthetic osteolysis remains a major cause of hip implant failure. As polyethylene particles from conventional metal-on-polyethylene implants have been associated with these failures, an interest in lower wear metal-on-metal (MM) bearings has emerged. However, the biological effects of nanometer-size chromium oxide particles, predominant type of wear particles produced by MM implants, remain mostly unknown. Therefore, this study aimed to determine the cytotoxicity of nanometer-size Cr2O3 particles on macrophages in vitro, by analyzing their effects on cell mortality and cytokine release and comparing them with those of similarly-sized alumina (Al2O3) particles (known to be relatively bioinert). Results showed that at high concentrations, nanometer-size Cr2O3 particles can be cytotoxic to macrophages, inducing significant decreases in total cell numbers and increases in necrosis. Results also showed that, at high concentrations, the cytotoxicity of Cr2O3 particles was overall higher than that of Al2O3 particles, even though Cr2O3 and Al2O3 are both stable forms of ceramic materials. However, it appeared to be lower than that of previously reported conventional polyethylene and CoCrMo particles. Therefore, chromium oxide particles may not be the main culprit in initiating the inflammatory reaction in MM periprosthetic tissues.
5

Periprotetická osteolýza / Periprosthetic osteolysis

Veigl, David January 2011 (has links)
Periprosthetic osteolysis remains the leading complication of total hip arthroplasty. It often results in aseptic loosening of the implant with a requirement for a revision surgery. Wear-generated particular debris is the main cause of initiating this destructive process. The most important cellular target for wear debris is a macrophage, which responds to particle challenge by activatig proinflamatory signals, which contribute to increased bone resorption. The activation of the RANKL/RANK/OPG system is considered to be a likely cause of periprosthetic osteolysis leading to implant failure. The aim of this study was to examine the possible correlation between the clinical extent of osteolysis, the number of wear particles and the expression of the osteoclastic mediator RANKL in the tissues around aseptically loosened cemented and non-cemened total hip replacements. Periprosthetic tissues were harvested from 59 patients undergoing revision hip replacement for aseptic loosening. We had observed RANKL-positive cells in 23 of our 59 patients, their presence was noted predominantly in tissues with a loosened cemented endoprosthesis. We have shown that RANKL is present only in the tissues with a large amount of wear debris and predominantly in the cases involving lacunar type of osteolysis. Key words:...
6

Periprotetická osteolýza / Periprosthetic osteolysis

Veigl, David January 2011 (has links)
Periprosthetic osteolysis remains the leading complication of total hip arthroplasty. It often results in aseptic loosening of the implant with a requirement for a revision surgery. Wear-generated particular debris is the main cause of initiating this destructive process. The most important cellular target for wear debris is a macrophage, which responds to particle challenge by activatig proinflamatory signals, which contribute to increased bone resorption. The activation of the RANKL/RANK/OPG system is considered to be a likely cause of periprosthetic osteolysis leading to implant failure. The aim of this study was to examine the possible correlation between the clinical extent of osteolysis, the number of wear particles and the expression of the osteoclastic mediator RANKL in the tissues around aseptically loosened cemented and non-cemened total hip replacements. Periprosthetic tissues were harvested from 59 patients undergoing revision hip replacement for aseptic loosening. We had observed RANKL-positive cells in 23 of our 59 patients, their presence was noted predominantly in tissues with a loosened cemented endoprosthesis. We have shown that RANKL is present only in the tissues with a large amount of wear debris and predominantly in the cases involving lacunar type of osteolysis. Key words:...

Page generated in 0.1682 seconds