• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 321
  • 107
  • 47
  • 29
  • 13
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 661
  • 115
  • 108
  • 104
  • 91
  • 88
  • 76
  • 72
  • 63
  • 63
  • 62
  • 61
  • 60
  • 57
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Single-Crystal Halide Perovskites for High Efficiency Photovoltaics

Alsalloum, Abdullah Yousef 27 July 2019 (has links)
Lead halide perovskite solar cells (PSCs) are considered the fastest growing photovoltaic technology, reaching an outstanding certified power conversion efficiency of 24.2% in just 10 years. The best performing PSCs are based on polycrystalline films, where the presence of grain boundaries and ultra-fast crystallization limit the further development of their performance by increasing the bulk and surface defects. Compared to their polycrystalline counterparts, single crystals of lead halide perovskites have been shown to possess much lower trap-state densities and diffusion lengths exceeding 100𝜇m. In this thesis, using a solution space-limited inverse temperature crystallization method, twenty-microns thick single crystals of MAPbI3 are grown directly on the charge selective contact to construct highly reproducible p-i-n inverted type solar cells with fill factors(FF) as high as 84.3% and power conversion efficiencies (PCEs) exceeding 21% under 1 sun illumination (AM 1.5G). A key requisite for high PCEs is avoiding surface hydration, in which moisture attacks the perovskite/transporting layer interface and causes a significant decrease in short-circuit current. These solar cells set a record for single crystal PSCs, and highlight the potential of single crystal PSCs in furthering perovskite photovoltaic technology.
52

Interface engineering of high performance organic and perovskite solar cells

Seitkhan, Akmaral 05 1900 (has links)
Both organic and perovskite solar cells (OSCs and PSCs, respectively) have shown remarkable progress in recent years reaching power conversion efficiencies (PCEs) of 17.6% and 25.2% for a single cell, respectively. These results were achieved by simultaneous advancements in organic and perovskite materials design and synthesis, as well as device and interfacial engineering. As these emerging photovoltaic technologies move closer to commercialization, further improvements in efficiencies and stability of the solar cells are needed. Interfaces in these thin-film solar cells have proven to be of tremendous importance for both device performance and degradation. This work is focused on studying recombination losses at the charge extracting layers in OSCs and PSCs and finding simple solution-processable ways of improving interfacial contacts. In the first part, we propose a simple way to improve the electron extracting properties of Phen-NaDPO, a small organic molecule widely used in OSCs, by mixing it with Sn(SCN)2. We show that this approach benefits morphology and charge transport, thus reducing recombination losses and improving overall performance of various bulk heterojunction OSCs and PSCs. In the second part, we describe the development of a multilayered system of electron transporting interlayers (ETLs) to improve the PCE and operational stability of PSCs. We sequentially deposit PC60BM, Al-doped ZnO (AZO), and small organic molecule triphenyl-phosphine oxide (TPPO), and study how the ETL properties and device performance change with each layer. We find that the trap-assisted recombination and energy level alignment in PSCs improve due to specific chemical interactions between PC60BM, AZO, and TPPO. The third part is divided into two and is focused on CuSCN, a wide bandgap inorganic molecular hole transporting material, and its application in OSCs. In the first half, we study the recombination and photogeneration processes in PC70BM-only OSCs. We demonstrate that CuSCN plays a crucial role in excitons dissociation and efficient charge transfer at the CuSCN/PC70BM interface. In the second half, we optimize CuSCN layers’ structural and electronic characteristics using a simple solvent engineering approach. We study how processing conditions affect the morphological, chemical, optical, and electronic properties of CuSCN and how they impact the OSCs’ performance.
53

Dynamics of Light-Matter Coupling in Lead Halide Perovskites

Schlaus, Andrew January 2020 (has links)
Lead halide perovskites are attractive material systems for both classical and quantum light emission because of their facile and diverse synthetic techniques, broad tunability in bandgap energy, high emission quantum efficiencies, and the possibility strong light-matter coupling. Despite extensive research into lead halide perovskites, there remain extensive debates into the mechanisms behind various light emission processes. This thesis has three objectives. First, to understand the properties of perovskite nanowire lasers as well as the underlying photophysics. Second, to differentiate between behavior in the weak versus strong light matter coupling regimes. Finally, to understand where perovskites in distributed Bragg reflector microcavities fall in these regimes. A combination of static, time, and angle resolved spectroscopy is used to study nanowire and microcavity systems in combination with numerical methods to interpret the results. Perovskite nanowire emission is shown to arise from stimulated emission from an electron-hole plasma and coupling with bulk plasmons, while perovskite microcavities offer the possibility of strong coupling and emission from a polariton condensate. The spatial confinement of the photonic structure and quasi-spin orbit coupling in perovskite cavities are discussed as powerful tools which could extend the coherence time of polariton condensates in these systems.
54

High-performance monolithic perovskite-organic tandem solar cells

He, Mingjie 04 1900 (has links)
Wide-bandgap metal halide perovskite solar cells have become an alluring next-generation solar panel technology because of their simple manufacturing and rising efficiencies by up to 25.7%. When the single junction devices face the ultimate S-Q limit, the incorporation of wide-bandgap perovskite materials with low-bandgap absorbers to form multi-junction cells offers a promising route to surpass the theoretical efficiency. Monolithic perovskite-organic tandem cells are appealing among other compositions owing to the combination of the sub-cells advantages: low-cost, flexibility, and solution processing. In this work, we focused on optimizing the hole transporting materials (HTMs) separately for the two components in tandem devices. In the 1.76 eV perovskite subcell, three commonly seen HTMs are selected (2PACz, NiOx and PTAA) to investigate the influence on device performance. An MgF2 interlayer at perovskite/C60 is deposited as passivation to enhance the voltage and overall performance. It is found that 2PACz is most suitable for triple cation FA0.7MA0.15Cs0.15Pb(I0.6Br0.4)3, giving good crystallinity, energy match and absorption with a champion PCE of 16.12%. Then, we performed a similar optimization for ternary PM6: BTP-eC9: PC70BM with MoOx, MoOx/2PACz, and PEDOT: PSS as HTMs, where MoOx/2PACz present the best statistics. Finally, two terminal tandem devices were fabricated based on the two optimized subcells, and a promising efficiency of 23.6% and a Voc of 2.09V were reached free of hysteresis. More passivation methods or perovskite bandgap engineering are expected to further improve the performance and break the record.
55

High Performance Wide Bandgap Perovskite Solar Cell Based on Interface Engineering

wang, jiayi 17 May 2023 (has links)
As the power conversion efficiency (PCE) of single-junction solar cells approaching its theoretical limit, tandem solar cells have attracted great attention due to their ability to break this limitation. For example, the PCE of crystalline silicon-based solar cells (c-Si) reached 26.81% with an area of 274.4 cm2, approaching the theoretical limit of 29.4%. By combining the c-Si with perovskites, the theoretical PCE limitation of 29.4% can be further increased to 45%. The wide-bandgap (1.68 eV) inverted (p-i-n) perovskite solar cells (PSCs) are ideal candidates to integrate on top of narrow-bandgap solar cells to fabricate tandem solar cells, owing to the simple fabrication process and tunable bandgap. However, the PCE of wide-bandgap perovskite solar cells is limited by the severe open-circuit voltage loss due to non-radiative recombination arising from trap-assisted recombination and interfacial recombination. In this thesis, Poly[(9,9-bis[3-(trimethylammonium)propyl-2,7-fluorene)]-alt-2,7- (9,9-dioctylfluorene) diiodide (PFN-I), as modification layer between hole transport layer (HTL) and perovskite, was applied to efficiently passivate the interfacial defects, moderate the growth of perovskite crystal and modify the interfacial energy level alignment to enhance hole extraction. Through comprehensive characterization, it has been observed that the introduction of PFN-I into the system effectively reduces non-radiative recombination. Therefore, a PCE of 21.9% with an open-circuit voltage of 1.24 V and a fill factor of 80% was obtained for 1.68 eV-bandgap inverted PSCs.
56

Studies of BaO – La<sub>2</sub>O<sub>3</sub> – MgO – MnO<sub>n</sub> Compositional Space

Adkins, Drew David Wayne 30 December 2015 (has links)
No description available.
57

Induced Phase Transition in Magnetoelectric BiFeO3 Crystals, Thin-layers and Ceramics

Ruette, Benjamin Thibault 09 September 2003 (has links)
Bismuth ferrite (BiFeO₃) is a magneto-electric material which exhibits simultaneously ferroelectric and antiferromagnetic properties. We have used high-field electron spin resonance (ESR) as a local probe of the magnetic order in the magnetic range of 0-25 Tesla. With increasing magnetic field, an induced transition has been found between incommensurately modulated cycloidal antiferromagnetic and homogeneous magnetized spin state. The data reveal a number of interesting changes with increasing field, including: (i) significant changes in the ESR spectra; (ii) hysteresis in the spectra near the critical field. We have analyzed the changes in the ESR spectra by taking into account the magnetic anisotropy of the crystal and the homogeneous anti-symmetric Dzyaloshinsky-Moria exchange. We have also investigated phase induced transition by epitaxial constraint, and substituent and cystalline solution effects. Variously oriented BiFeO₃ epitaxial thin films have been deposited by pulsed laser deposition. Dramatically enhanced polarization has been found for (001)c, (110)c, and (111)c films, relative to that of BiFeO₃ crystals. The easy axis of spontaneous polarization lies close to (111)c for the variously oriented films. BiFeO₃ films grown on (111)c have a rhombohedral structure, identical to that of single crystals. Whereas, films grown on (110)c or (001)c are explained in terms of an epitaxially-induced transition between cycloidal and homogeneous spin states, via magneto-electric interactions. Finally, lanthanum modified BiFeO₃-xPbTiO₃ crystalline solutions have been found to have a large linear magneto-electric coefficient, ∝p. The value of ∝p (2.5x10⁻⁹ s/m or C/m²-Oe) is ∼10x greater than that of any other material (cg., Cr₂O₃ ∼2.5x10⁻¹⁰ s/m), and many order(s) of magnitude higher than unmodified BiFeO₃ crystals. The data also reveal: (i) that ∝p is due to a linear coupling between polarization and magnetization; and (ii) that ∝p is independent of dc magnetic bias and ac magnetic field. We show that the ME effect is significantly enhanced due to the breaking of the transitional invariance of a long-period spiral spin structure, via randomly distributed charged imperfections. / Master of Science
58

Novel Lithium Ionic Conducting Perovskite Materials for Lithium-Air Batteries

Almohareb, Muneerah January 2017 (has links)
Lithium Air (Li/O2) batteries are energy conversion devices that produce electricity from the oxidation of lithium metal at the anode and the reduction of molecular oxygen at the cathode. These batteries are considered as promising rechargeable cells for high power applications due to their high power density ranging from 1000 to 2000 Wh/kg. However, one of the most significant challenges is the need to separate the metallic lithium anode from any oxygen or water-containing environment while at the same time allowing fast and efficient lithium ion transport through the electrolyte. Therefore, lithium ion conducting materials that are water and CO2 resistant are a prerequisite. Common materials used as anode protective films and/or Li+ conducting electrolytes for lithium air batteries are perovskite-type oxides (formula: ABO3). Perovskites are good candidates for this application because of their versatility, particularly in regards to ionic conductivity. In the present work, a low cost perovskite family such as SFO (SmFeO3) is developed as a lithium ion conducting material by the introduction of Li+ into its lattice. The perovskites have been synthesized using a solid-state reaction method (SSR) and characterized using different techniques such as powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive X-ray Spectroscopy (EDS) and electrochemical impedance spectroscopy (EIS). The synthesized perovskites are based on samarium lithium ferrite and divided into two groups depending on the formal presence of vacancies in the stoichiometric formula. The first group (SLFO) with no formal vacancies has the stoichiometric formula of SmxLi1-xFeO2+x (where x = 0.1, 0.2, 0.3, 0.5 and 0.7). While the second group (SLFO*) was generated with less metal atoms than specified in the perovskite structure, thereby generating a structure with intrinsic vacancies and with the formula, Sm(x)Li([1-x] – [0.1] or [0.2]) FeO3-δ (where x = 0.3, 0.4, 0.5 and 0.6). Finally, the effect of varying Li and Sm concentrations in both groups and vacancies created in the lattice for the second group, on the ionic conductivity is explored.
59

Evolution of the Magnetic Ground States with Lattice Distortion and Chemical Inhomogeneity in Doped Perovskite Oxides

Manna, Kaustuv January 2013 (has links) (PDF)
The physics of doped transition metal perovskite has been an area of intense research in the last few decades due to their interesting magnetic and transport properties. Various exciting phenomena such as, colossal magneto resistance, high Tc superconductivity, multiferroicity, ferroelectricity, high temperature ferromagnetism, etc., have made these systems more fascinating in terms of fundamental study as well as technological applications. There are several intrinsic material characteristics in these perovskite oxides that can impact their magnetic properties. Lattice distortion and chemical in homogeneity are two important ones. Changes in valence and ionic radius in rare earth (A- site) and transition metal (B- site) directly result in structural modification through internal pressure. Consequently, atomic distances and bond angles between the transition metals vary. This, intern, influences the nearest neighbour exchange coupling energy and magnetic interaction. A detailed investigation has been carried out on two A-site doped perovskite namely, La0.85Sr0.15CoO3 & La0.5Sr0.5CoO3 and two B-site doped perovskite, LaMn0.5Co0.5O3 & LuMn0.5Ni0.5O3 with a view to study the impact of chemical in homogeneity and lattice distortion on their respective magnetic ground states. The thesis is organized in seven chapters. A brief summary of each is given below: Chapter 1: Provides a brief introduction about the perovskite structure. Origins of lattice distortions and its effect on the magnetic properties are discussed. It includes a discussion on different types of indirect magnetic interactions involved in perovskite oxide structure. The chapter concludes with a description of spin-glass, phase separation/ cluster-glass, memory effect in glassy magnetism, critical behaviour at phase transition and specific heat in magnetic systems. Chapter 2: This chapter outlines basic principles of the experimental techniques employed for the work presented in this thesis. Chapter 3: Details macroscopic as well as microscopic investigations carried out to understand the glassy magnetic anomalies in La0.85Sr0.15CoO3 samples. The origin of phase separation (PS) has been reinvestigated. Since the magnetic behavior of La0.85Sr0.15CoO3 (LSCO15) lies in the border of spin glass (SG) and ferromagnetic (FM) region in the x-T phase diagram, it is subject to controversial debate for the last several years. While some research groups favour PS, others regard SG behaviour as the dominant phenomenon. In-depth investigation carried out to elucidate these views is outlined in this chapter in two sections. The first section deals with the glassy magnetic anomalies in single crystals of LSCO15 grown by optical floating zone method. Since the sample crystallizes from melt, it possesses good compositional homogeneity and the phase purity is confirmed by XRD pattern. Many characteristics of canonical SG systems are discernible in the magnetic study, such as, kink in field-cooling curve below Tf, frequency-dependent peak shift and the time dependent memory effect. The relaxation time in sub-pico second range (~10-13 s) is very similar to that of the typical SG systems. Time dependent transport relaxation study exhibits memory effect and the time evolution of resistance scales with magnetization and strictly adheres to the stretched exponential behaviour as commonly expected for a SG-like disordered system. However, a detailed study on transport mechanism and temperature-dependent inverse susceptibility reveals the existence of nanoscopic PS in the sample. In the second section, the origin of PS has been examined through a comprehensive study on two sets of LSCO15 polycrystalline samples prepared from the same initial mixture but subjected to different heat treatment processes. This study depicts the dependence of PS on the preparation conditions. The contrasting magnetic behaviour of PS and SG was resolved by experiments of dc magnetization, linear & non-linear ac susceptibility, neutron depolarization and field-cooled magnetic relaxation. Both samples conform to the general characteristics of a glassy behaviour: a kink in FC magnetization, frequency-dependent peak shift (Vogel–Fulcher law), dc bias-dependent peak shift in accordance with de Almeida–Thouless relation, and characteristic relaxation time in the range of 10-13/10-14 s. This is despite their internal spin structure and interaction being much different at a microscopic level. It is found that the sample processed through a proper homogenization process mimics the SG behaviour, whereas the sample prepared by the conventional method behaves like the PS phase. It is confirmed from neutron depolarization experiments that no ferromagnetic correlation exists in the SG phase of La0.85Sr0.15CoO3, a result in contrast to that of PS phase. Higher harmonic ac susceptibility measurement complements the above observation by the evidence that of 2nd order harmonics are not present in the SG phase of La0.85Sr0.15CoO3. The field-cooled magnetic relaxation study makes a distinct reference to the relaxation process and the strength of interaction between PS and SG like phases. In essence, a concerted effect is made to identify and resolve the spin-glass phase from phase-separated/ cluster-glass. This work shows that chemical in homogeneity is a key factor responsible for phase separation in La0.85Sr0.15CoO3; also intrinsic differences between PS and SG are identified that can serve as guiding tools for research in other similar magnetic oxide systems. It is concluded that the true ground state magnetic property of La0.85Sr0.15CoO3 is spin-glass in nature. Chapter 4: This chapter contains two sections. In the first part, the origin of the re-entrant spin-glass (RSG) behaviour in La0.5Sr0.5CoO3 has been investigated using the conventional magnetometer measurements. Polycrystalline samples prepared by the conventional solid-state synthesis exhibit RSG characteristics with a glassy transition at 190 K. The nature of frequency dependence of χ″(T), a pronounced memory effect and the sluggish response in dc magnetization measurement, all of which clearly indicate the re-entrant behaviour. But, once the sample is taken through a rigorous homogenization procedure of repeated grinding and annealing, its phase turns into pure ferromagnetic one. During the course of this homogenization process, the sample loses oxygen with concurrent degeneration of TC to a lower level. In order to regain the oxygen stoichiometry, it is necessary to anneal the sample in oxygen environment at 900 oC, which triggers deleterious ageing effect by which TC falls progressively with time. In the second part, the effect of oxygen stoichiometry on La0.5Sr0.5CoO3 (LSCO50) thin-films has been investigated. The highest TC reported so far for LSCO50 thin film is 250 K, which is significantly less compared to the bulk TC (262 K) of an oxygen stoichiometric compound. This work focuses on achieving the highest ferromagnetic transition temperature (TC) for LSCO50 films under optimized growth conditions. The analysis of experimental data suggests that the Curie temperature can be enhanced to 262 K, irrespective of whether or not, (a) the film on LAO or STO or (b) any induced strain occurs in the LSCO50 film. Apart from different thin-film growth parameters such as oxygen pressure and substrate temperature during the growth, and post-growth annealing temperature and oxygen pressure, the profile of the laser beam used for ablation of bulk material profile also plays an important role. The elevation of Curie temperature observed in thin-films to that close to the bulk value is believed to be a result of improved stoichiometric composition of oxygen facilitated during thin film growth. However, the strong ageing effect seen is quite close to that is observed in oxygen-annealed polycrystalline sample. Chapter 5: Of the three segments constituting this chapter, the first outlines different magnetic anomalies induced by lattice distortion in LaMn0.5Co0.5O3 (LMCO) single crystals. Single crystals of LMCO compound [(100) orientation] have been successfully grown using the optical floating zone method. Powder as well as single crystal x-ray diffraction analyses provides evidence of large strain dependent structural distortion in as-grown crystals. Spatially resolved 2-D Raman scan reveals that the strain generates a distribution of octahedral distortion in the lattice. While some are compressive in nature, others in the nearby territory relate to tensile distortion. The ac susceptibility measurement elucidates distinct changes in the ferromagnetic transition temperature (TC) in the as grown (strained) crystal. It is possible to release strain by rigorous annealing process. Which also results in a uniform TM-O octahedral deformation. Room temperature 2-D Raman spectra bears testimony to this. Upon annealing, the single crystalline order is diminuend by the atomic rearrangement. This causes tilting of the oxygen octahedra, by decreasing intra-octahedral angle θTM-O-TM, and lowering of exchange energy Jex between the magnetic ions. The transition temperature falls and the magnetic phase merges with that in the strain-free polycrystalline material. A detailed critical analysis performed in the vicinity of paramagnetic to ferromagnetic phase transition in both the samples establishes that the ground state magnetic behaviour, assigned to the strain-free LMCO crystal is of 3D Heisenberg type. But the local octahedral distortion present in the as-grown crystal causes mean field like magnetic interaction at few local sites. This serves as a key drive for the critical exponents to distance from the 3D Heisenberg model towards the mean-field type. The second part of this chapter concerns the anomalous re-entrant glassy magnetic behaviour observed in LMCO single crystals. The ac susceptibility study illustrates the low temperature anomalous glassy magnetic ordering in these crystals. The material behaves like a normal magnetic glass, (frequency-dependent peak-shift in ac susceptibility) in conformance with the phenomenological Vogel-Fulcher law, of spin flips time: ~10-4 s. However, the crystal does not respond to the external dc bias and just as well remains free from memory effect. Anomalous behaviour of this kind is rare in magnetic oxides. The magneto-dielectric effect in LMCO is discussed in the third section of this chapter. The real part of dielectric permittivity (ε′) has a colossal value of 1800 at 220 K and 10 kHz. However as the sample is cooled further, ε′ decreases slowly; followed by dielectric relaxation in the region, 120 - 150 K. Detailed analysis of the temperature dependence of the imaginary part of the dielectric permittivity (ε″) show that there is no relaxor-like phenomena in this compound. The frequency dependence of ε″ reveals that the low frequency region is dominated by Maxwell-Wagner relaxation, whereas, at high frequency, a Debye type relaxation persists. The temperature dependent full-width at half-maximum for this Debye relaxation, peaks at the corresponding TC. The temperature variation of the relaxation time has two domains of different slopes. At zero external field, ε″(ω) has a low activation energy (U = 46.4 meV) in the ferromagnetic region, compared to that in the paramagnetic (60.1 meV) phase. The boundary lies near the corresponding TC. In the presence of external applied field 5 T, U remains unchanged in the ferromagnetic region, but decreases ( U ~ 5 meV) in the paramagnetic phase. These results signify the existence of strong magneto-dielectric coupling in LMCO crystals. The field variation of ε′(ω) at fixed temperature and specific frequency highlights the rise in magnetodielectricity (MD) as well as magneto-loss (ML) with increasing magnetic field. It is perceived that this variation is not due to the magneto resistance of LMCO or caused by LMCO - electrode interfaces. The influence of extrinsic parasitic contributions cannot be ruled out entirely, but the presence of positive MD as well as ML at frequencies above the time constant suggests that the relaxation process and the magneto-dielectric coupling are intrinsic to the LaMn0.5Co0.5O3 system. Chapter 6: This chapter describes the successful synthesis of a new perovskite oxide compound, LuMn0.5Ni0.5O3. The structural characterization employs the Rietveld refinement of powder X-ray diffraction pattern. The compound crystallizes in orthorhombic Pbnm crystal structure. dc magnetization reveals ferromagnetic ordering in the sample. However the low temperature glassy phase spotted in the ac susceptibility measurement might classify it as a re-entrant spin-glass compound. But the display of memory effect until the ferromagnetic transition indicates that intrinsic ant ferromagnetic interaction prevails over the dominant ferromagnetic interaction. A critical behaviour study was carried out in the vicinity of the ferromagnetic to paramagnetic phase transition, which provided the critical exponents: α = 0.37, β = 0.241 ± 0.003, γ = 1.142 ± 0.003 and δ = 5.77 ± 0.03. Interestingly, this set of critical exponents does not match with any of the conventional theories of mean field, 3D Heisenberg, and 3D Ising. Rather it fits quite well with data calculated for the stacked triangular 3D version of the (Z2 × S1) model [α = 0.34 ± 0.06, β = 0.25 ± 0.01, γ = 1.13 ± 0.05 and δ = 5.47 ± 0.27]. This study indicates that the magnetic ground state of LuMn0.5Ni0.5O3 is canted ferromagnetic. Chapter 7: Various important results are summarized in this chapter. It also provides a broad outlook in this area of research.
60

Development of alternative cathodes for intermediate temperature solid oxide fuel cells

Kim, Junghyun 05 November 2009 (has links)
text

Page generated in 0.0577 seconds