Spelling suggestions: "subject:"perovskite.""
101 |
Hybrid Lead Halide Perovskite and Bismuth-Based Perovskite-Inspired Photovoltaics: An In Situ InvestigationTang, Ming-Chun 15 October 2019 (has links)
Ink-based semiconductors that come to mind today include conjugated molecules and polymers, colloidal quantum dots, metal halide hybrid perovskites, and transition metal oxides. These materials form an ink (solution/ suspension/ sol-gel) that can be applied and dried in ambient air to form high-quality films for optoelectronic devices. In this study, we will introduce the current understanding of ink-based lead and lead-free hybrid perovskite and perovskite-inspired thin films. Examples will be presented through time-resolved studies of the solidification to link the solid-state microstructure and device figures of merit to the ink’s formulation, drying, and solidification process. The perovskite crystallization kinetics characterized in situ during the solution process indicates an essential role by the inclusion of Cs+ and K+ alkali metal cations in perovskite inks. The film and device characterizations indicate the functions of mixed cation and halides in determining the optoelectronic properties. The further sophisticated design of perovskite inks enables significantly optimized charge dynamics, including exciton separation, inter-grain charge transfer, trap density, charge mobility, and charge collection efficiency. The considerably improved optoelectronic properties lead to higher charge collection efficiency and, therefore, better open-circuit voltage and fill factor for the Cs+-containing 3D perovskite devices in contrast to the control FAPbI3 one. Recent developments in ink formulation and processing that enable scalable ambient fabrication of high-quality perovskite semiconductor films will also be presented. These findings raise the possibility of developing more controlled perovskites for systematically addressing both charge dynamics and degradation mechanisms in concert for the timely commercialization of perovskite solar cells.
|
102 |
Hybrid lead halide perovskite thin films and solar cells by chemical vapour depositionNgqoloda, Siphelo January 2021 (has links)
Philosophiae Doctor - PhD / The organic-inorganic hybrid perovskites such as methyl ammonium lead iodide (MAPbI3) or mixed halide MAPbI3-xClx (x is usually very small) have emerged as an interesting class of semiconductor materials for their application in photovoltaic (PV) and other semiconducting devices. A fast rise in PCE of this material observed in just under a decade from 3.8% in 2009 to over 25.2% recently is highly unique compared to other established PV technologies such as c-Si, GaAs, and CdTe. The high efficiency of perovskites solar cells has been attributed to its excellent optical and electronic properties. Perovskites thin film solar cells are usually deposited via spin coating, vacuum thermal evaporation, and chemical vapour deposition (CVD).
|
103 |
Studium optických vlastností tenkých vrstev prekurzorů pro přípravu monokrystalů perovskitů FAPbBr3 / Study of optical properties of thin films of perovskiteFAPbBr3 precursorsSmolková, Denisa January 2021 (has links)
This thesis examines the preparation of thin layers of material for photovoltaic applications with focused on perovskites and determining their optical properties. Basic information about the photovoltaic panels, especially about the perovskites, and the preparation of thin layers is supplied in the theoretical section. This section includes description of optical properties and the main method of study of optical properties, spectroscopic ellipsometry. Experimental section is focused on the preparation of thin layers of perovskites FAPbBr3 and its precursors by spin-coating. Optical properties are evaluated using profilometry, UV VIS spectrometry and spectroscopic ellipsometry. The conclusion summarizes the results of this experiment with focused on comparison of ellipsometric spectrums of perovskites and its precursors.
|
104 |
Studium perovskitových oxidových katalyzátorů pro parciální oxidace metanu / Study of Perovskite Type Oxide Catalysts for Partial Oxidation of MethaneCihlář, Jaroslav January 2011 (has links)
Research was curried out on the perovskite systems with general formula A1-xA‘xB1-yB‘yO3± (where A=La, Sm, A´=Ca, B´=Al, B=Co,Fe,Mn and Cr). Perovskite oxides were sythesized by polymerisation methods and characterised by RTG analysis, BET method, SEM and EDX. TPD spectra and catalyst testing were measured in high temperature plug flow reactor and products were analysed by mass spectrometry. It was found, that metane oxidation at ratio O2/CH40,5 depended on the temperature. Total oxidation proceeded at the temperature betwen 300-700oC to the carbon dioxide and water, while the partial oxidation of metane (POM) occured at above 700oC to the hydrogen and carbon oxid (syngas). This was ascribed by equilibrium of O2 betwen gas phase and solid perovskite. There was used 12 perovskite systems, which catalysed methane oxidation by the same way. Dry reforming of methane run above temperature 700oC. Cobaltite and ferite type perovskites were found as the most active catalytic systems. On the base of obtained results the Mars van Krevelen mechanism was established for explanation of oxidation and reformation of methane by perovskite systems. It was showed, that POM was running by two steps mechanism. Products of total oxidation was occured in the first step, which were passed over to the syngas (H2+CO) in the second step.
|
105 |
Light Management for Silicon and Perovskite Tandem Solar CellsJanuary 2019 (has links)
abstract: The emergence of perovskite and practical efficiency limit to silicon solar cells has opened door for perovskite and silicon based tandems with the possibility to achieve >30% efficiency. However, there are material and optical challenges that have to be overcome for the success of these tandems. In this work the aim is to understand and improve the light management issues in silicon and perovskite based tandems through comprehensive optical modeling and simulation of current state of the art tandems and by characterizing the optical properties of new top and bottom cell materials. Moreover, to propose practical solutions to mitigate some of the optical losses.
Highest efficiency single-junction silicon and bottom silicon sub-cell in silicon based tandems employ monocrystalline silicon wafer textured with random pyramids. Therefore, the light trapping performance of random pyramids in silicon solar cells is established. An accurate three-dimensional height map of random pyramids is captured and ray-traced to record the angular distribution of light inside the wafer which shows random pyramids trap light as well as Lambertian scatterer.
Second, the problem of front-surface reflectance common to all modules, planar solar cells and to silicon and perovskite based tandems is dealt. A nano-imprint lithography procedure is developed to fabricate polydimethylsiloxane (PDMS) scattering layer carrying random pyramids that effectively reduces the reflectance. Results show it increased the efficiency of planar semi-transparent perovskite solar cell by 10.6% relative.
Next a detailed assessment of light-management in practical two-terminal perovskite/silicon and perovskite/perovskite tandems is performed to quantify reflectance, parasitic and light-trapping losses. For this first a methodology based on spectroscopic ellipsometry is developed to characterize new absorber materials employed in tandems. Characterized materials include wide-bandgap (CH3NH3I3, CsyFA1-yPb(BrxI1-x)3) and low-bandgap (Cs0.05FA0.5MA0.45(Pb0.5Sn0.5)I3) perovskites and wide-bandgap CdTe alloys (CdZnSeTe). Using this information rigorous optical modeling of two-terminal perovskite/silicon and perovskite/perovskite tandems with varying light management schemes is performed. Thus providing a guideline for further development. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
|
106 |
Synthesis and Characterization of Nanostructured Cathode Material (BSCF) for Solid Oxide Fuel CellsDarab, Mahdi January 2009 (has links)
This thesis focuses on developing an appropriate cathode material throughnanotechnology as a key component for a promising alternative of renewable energygenerating systems, Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFC).Aiming at a working cathode material for IT-SOFC, a recently reported capable oxideperovskite material has been synthesized through two different chemical methods.BaxSr1-xCoyFe1-yO3−δ (BSCF) with y =0.8 and x =0.2 was fabricated in nanocrystallineform by a novel chemical alloying approach, co-precipitation- as well as conventionalsol-gel method to produce oxide perovskites. The thermal properties, phase constituents,microstructure and elemental analysis of the samples were characterized by TG-DSC,XRD, SEM and EDS techniques respectively. Thermodynamic modeling has beenperformed using a KTH-developed software (Medusa) and Spark Plasma Sintering (SPS)has been used to obtain pellets of BSCF, preserving the nanostructure and generatingquite dense pellets for electrical conductivity measurements.The results show that the powders synthesized by solution co-precipitation have cubicperovskite-type structure with a high homogeneity and uniform distribution and meanparticle size of 50-90 nm range, while sol-gel powders are not easy to form a pure phaseand mostly the process ends up with large particle containing two or three phases.Finer resultant powder compared to sol-gel technique and earlier research works onBSCF has been achieved in this project using oxalate co-precipitation method. Topreserve nanoscaled features of BSCF powder which possess a significant increase ofelectrical conductivity due to decrease the electrical resistivity of grain boundaries, forthe sample synthesized through co-precipitation, ~92% dense pellet sintered by SPS atV1080 °C and under 50 MPa pressure and its electrical conductivity has been measuredfrom room temperature to 900 °C.Specific conductivity values were precisely measured and the maximum of 63 S.cm-1 at430 °C in air and 25 S.cm-1 at 375°C in N2 correspondingly are two times higher thanconventional BSCF implying a high pledge for nano-BSCF as a strong candidate ascathode material in IT-SOFC.
|
107 |
Syntes och karakterisering av ogiftiga organiska metall halid halvledare för solceller / Synthesis and characterization of non-toxic organic metal halide semiconductors for solar cell applicationsDahlin, Oskar January 2015 (has links)
The endeavor to have more efficient solar cells and as environmentally beneficial as possible are the driving forces for this work. The way to reach this is by research to better the understanding of the mechanisms and parameters that govern the performance of solar cells. New materials are essential to develop because the current ones lack stability and are water, temperature and UV-radiation sensitive. In this work the lead (Pb2+), which is poisonous and hazardous is intended to be replaced in the organic metal halide (OMH) perovskite structure. This is tested with gold or silver combined with bismuth and silver by itself. Also trimethylsulfonium gold or silver iodides are investigated. The methylammonium cation is also substituted to cesium. The perovskite material both absorbs light and transports charges in the solar cells. Materials based on AuI/AgI, BiI3 and CH3NH3I and AuI/AgI and [Me3S]I and AgI, BiI3 and CsI were synthesized and analyzed by XRD on thin film and mesoporous substrate and Raman spectroscopy to determine material structure and bonding. J-V measurements were performed to see the function in solar cells. After this conductivity and absorption parameters were determined by an electrical conductivity test and UV-vis absorption spectroscopy. XRD measurements indicate that the perovskite structure could have been obtained because the materials match with the XRD spectra of [20] foremost T3, T5 and T6, Cs1 and Cs2. In T7 some new structure is formed. The bismuth could be partially substituted by silver as the metal cation. The samples are quite amorphous, but still containing crystalline peaks, the product material could be a mixture of a crystalline and an amorphous phase. The crystalline phase could have the desired perovskite structure. To have mesoporous TiO2 as substrate seem to enhance a more crystalline structured material. All the materials seem to have formed some new structures because the pure reactants does not seem to be present, exceptions could be P1 and T1 that contained AuI. The change of cation from methylamine to cesium though results in a shift of the peak positions because of the change of cation size as in [20], but the structure is most likely the same. Raman spectroscopy indicate that there is a change in structure, some new bond being present, when increasing the methylamine ratio for the presumed methylammonium silver bismuth iodide perovskites. This concerns materials T5, T6, T7 with increasing ratio of methylamine. This new bond is most pronounced in T7 where the methylamine content is the highest. Both Silver and bismuth iodide bonds seem to be present and cannot be coupled to be the pure reactants recrystallizing and some new bonds of these are present in all materials to some extent. The organic bond vibration has low intensity and might indicate that there is not so much organic cation present in the product and thus the probability of having the desired product anion decreases. The solar cells made with Spiro-OMeTAD were 700-4000 times more efficient than those made with Sulphur polymer HTM. Solar cells made with Spiro-OMeTAD as HTM gives slightly higher efficiency when increasing the methylammonium cation ratio. For cesium as cation the combined metal cation constellation with bismuth and silver gives a little higher efficiency than bismuth alone. Methylammonium as cation gives a higher efficiency than cesium. Solar cells made with Sulphur polymer HTM show approximately 3-30 times higher efficiency with methylammonium as cation compared to cesium as cation. HTM material seem to affect the perovskite material making some of the cells completely transparent and some of them paler, water in the solvent chlorobenzene can be a possible explanation. The transparency can be the reason for the low efficiency obtained for the solar cells. Also the measurement methodology of these solar cells can also have been false, measuring the contacts, and the etching procedure could be another source of this. The solar cells had quite low efficiencies compared to [20], although same presumed material and procedure has been used and thus there might be something wrong in the accuracy of the manufacturing. The cells should probably been made several times and possible sources of error should be analyzed and corrected for. The materials were all relatively conductive. P1 gave the highest conductivity, almost three times higher than for methylammonium lead iodide that has a conductivity of 1,1x10-4 s/cm [3]. Increasing the methylammonium ratio gave an increase of the conductivity both with bismuth and silver as metal cations and silver alone. The increase of the methylammonium ratio might result in a new structure formed which has lattice planes that are more conductive. A change of gold to silver for the trimethylsulfonium iodide materials gave a large decrease in conductivity. The materials have different absorption curves meaning that they have different bandgaps and this indicates differences in structure. The bandgaps of all materials are indirect contrary to what is proven to be the case for perovskites that are believed to have direct bandgaps in general. To have indirect bandgaps requires a shift in momentum in the electronic transitions and is not as beneficial as having direct bandgaps. Compared to methylammonium lead iodide that has a direct bandgap of 1,6 eV, the bandgaps are at least 0,5 eV higher and range between 2,2-2,36 eV. P1 had a low bandgap of 1,6 eV meaning it absorbs a wide range of wavelengths. The conductivity does not seem to be the obstacle and the cells that are not transparent absorb light. It is highly possible that the low solar cell performance, at least to a certain extent, has to do with the production process. The low scan rate could also affect the low efficiencies and HTM Spiro-OMeTAD should be used. Currently the efficiency of the perovskite materials with silver/bismuth, gold/bismuth and silver are too low, and not able to substitute lead in the perovskite structure solar cells. Neither trimethylsulfonium gold or silver iodide cells nor cesium perovskites have enough efficiency at present. The conductivities for the materials are promising and the materials that are not completely transparent absorb light. / Strävan att utveckla effektivare solceller och så miljövänliga som möjligt är drivkrafterna för det här arbetet. För att uppnå detta krävs forskning för att förbättra förståelsen för vilka mekanismer och parametrar som styr hur väl solcellerna fungerar. Det är nödvändigt att ta fram nya material, då de nuvarande brister i stabilitet, de är framförallt känsliga för vatten, temperatur och UV-strålning. I det här arbetet är syftet att byta ut bly (Pb2+), som är giftig och kopplad till hälsorisker, i den organiska metall halid (OMH) perovskit strukturen. Detta görs med guld eller silver i kombination med vismut och silver självt. Även trimetylsulfonium- guld eller silver undersöks. Metylammonium katjonen substitueras också mot cesium. Perovskit material absorberar både ljus och transporterar laddningar i solceller. Material baserade på AuI/AgI, BiI3 och CH3NH3I and AuI/AgI och [Me3S]I and AgI, BiI3 and CsI syntetiserades. Dessa analyserades, med XRD på dels ett substrat av tunn film och dels ett mesoporöst och Raman spektroskopi, för att bestämma strukturen på materialet och bindningar. J-V mätningar utfördes för att se hur materialen fungerade som solceller. Efter detta utfördes mätningar av konduktiviteten och absorptions parametrar bestämdes genom ett elektriskt konduktivitetstest respektive UV-vis absorptions spektroskopi. XRD mätningarna indikerar att perovskit strukturen kan ha erhållits eftersom spektrumen överensstämmer med de i [20], framförallt för T3, T5 och T6, Cs1 och Cs2. I T7 bildas någon ny struktur. Vismut skulle kunna vara delvis utbytt mot silver som metalkatjon. Proven är relativt amorfa, men uppvisar kristallina toppar och produkten skulle kunna vara en blandning av en kristallin och amorf fas, där den kristallina fasen skulle kunna ha den eftersträvade perovskit strukturen. Mesoprös TiO2 som substrat verkar öka graden av kristallinitet hos materialen. Samtliga material verkar ha bildat någon ny struktur eftersom reaktanterna i sin rena form inte verkar finnas. Undantag skulle kunna vara P1 och T1, vilka innehåller AuI. Bytet av katjon från metylammonium mot cesium resulterar i ett skifte av topparna troligen beroende av skillnaden i storlek mellan katjonerna, liksom påvisas i [20], men strukturen är förmodligen densamma. Raman spektroskopin indikerar en förändring i strukturen, någon ny bindning finns, hos materialen när metylammonium andelen ökas för de förmodade metylammonium silver vismut jodid perovskiterna. Detta gäller materialen T5, T6, T7, där andelen metylammonium ökar. Den nya bindningen är mest uttalade i T7, där metylammonium andelen är den högsta. Både silver och vismut jodid bindningar verkar finnas och kan inte kopplas till att de rena reaktanterna har rekristalliserats och nya bindningar av dessa finns i alla material till en viss grad. Den organiska bindningens vibration har låg intensitet och kan tyda på att det inte finns så mycket organisk katjon i produkten och således minskar sannolikheten att ha den eftersträvade anjon produkten. Solcellerna gjorda med Spiro-OMeTAD var 700-4000 gånger mer effektiva än dom gjorda med Svavel polymer HTM. För solcellerna gjorda med Spiro-OMeTAD som HTM ger en ökning av metylammonium katjon andelen en ökad effektivitet. För cesium som katjon med den kombinerade metalkatjon konstellationen med vismut och silver, blir effektiviteten högre än om vismut är metalkatjon självt. Metylammonium som katjon ger en högre effektivitet än cesium. Solceller gjorda med Svavel polymer HTM visar ungefär 3-30 gånger högre effektivitet med metylammonium som katjon jämfört med cesium som katjon. HTM materialet verkar påverka perovskit materialet och göra några av cellerna helt transparenta och de andra blekare. Klor benzen användes som lösningsmedel och denna kan ha innehållit vatten och kan vara orsaken till färgskiftningen. Detta kan vara orsaken till den låga verkningsgraden som erhölls för solcellerna. En annan möjlig förklaring skulle kunna vara metoden för mätningarna. Denna kan ha varit felaktig, då kontakten troligen har varit det som har mätts och etsningsprocessen skulle kunna vara en orsak till detta. Solcellerna uppvisar ganska låg effektivitet i jämförelse med [20], trots att samma material och procedur har använts och således kan det vara något fel i precisionen av framställningen. Cellerna skulle förmodligen gjorts om ett antal gånger och möjliga felkällor borde utretts och åtgärdats. Materialen var överlag relativt konduktiva. P1 gav den högsta konduktiviteten, nära tre gånger högre än metylammonium bly jodid, som har en konduktivitet på 1,1x10-4 s/cm [3]. En ökning av andelen metylammonium gav en ökning av konduktiviteten både med vismut och silver som metalkatjon och silver självt. Ökningen av andelen metylammonium skulle kunna resultera i ett en ny struktur uppkommer som har plan som är mer konduktiva. Utbytet av guld mot silver för trimetylsulfonium jodid materialen gav en markant sänkning av konduktiviteten. Materialen har olika absorptionskurvor vilket innebär att de har olika bandgap och detta indikerar olikheter i strukturen. Bandgapen för alla material är indirekta, trots att bandgapen för perovskiter i regel är direkta. Att ha indirekta bandgap kräver ett skifte i momentum i de elektroniska energiöverföringarna och är inte så fördelaktigt som att ha direkta bandgap. I jämförelse med metylammonium bly jodid, som har ett direkt bandgap på 1,6eV, är bandgapen minst 0,5 eV högre och varierar mellan 2,2-2,36 eV. P1 hade ett lågt värde på bandgapet, 1,6 eV, vilket innebär absorption av ett brett spektrum av våglängder. Konduktiviteten verkar inte vara den faktor som är orsaken till den låga effektiviteten hos solcellerna och de celler som inte är transparenta absorberar ljus. Det är högst troligt att den låga effektiviteten har sin förklaring, åtminstone delvis, i produktionsprocessen för solcellerna. Den relativt låga skanningshastigheten kan också vara en orsak för den låga effektiviteten och HTM Spiro-OMeTAD bör användas. I dagsläget är effektiviteten för perovskitmaterialen med silver/vismut, guld/vismut och silver för låg och har inte möjlighet substituera bly i perovskit solceller. Inte heller trimetylsulfonium guld eller silver jodid cellerna och inte heller cesium perovskiternas effektivitet räcker till i dagsläget. Konduktiviteten för materialen är lovande och materialen som inte är transparenta absorberar ljus.
|
108 |
Structural and physical properties of ReN i03 (Re=Sm, N d) nanostructured films prepared by Pulsed Laser DepositionDiop, Ngom, Balla January 2010 (has links)
Philosophiae Doctor - PhD / Very few systems allow the study of the relationship between structural changes and physical properties in such a clear way as rare earth nickelate ReNi03 perovskites (Re (rare earth) = Pr, Nd, Sm and Gd). Synthesized for the first time by Demazeau et al [1] in 1971 and completely forgotten for almost twenty years, these compounds have regained interest since the discovery of high-temperature superconductivity and giant magnetoresistive effects in other perovskite-related systems. Due to its Metal-Insulator Transition (MIT) and thermochromic properties, the rare earth nickelate perovskite ReNi03 has received a great deal of attention for the past ten years in their thin films form [12]. Such unusual electronic and optical features are all the more interesting since the metal-insulator transition
temperature (TMn) can be tuned by changing the Re cation: LaNi03 is metallic. No minimum of the metallic conductivity of Sm0 . ssNd 0.45Ni03, as observed by Gire et al [12] (entropic effect), was reported by Ambrosini and Hamet [11]. It has been suggested by Obradors et al. [13] that changing the rare earth cation in the ReNi03 system, acts as internal chemical pressure (increasing internal pressure by substituting the rare earth cation with another one of larger ionic radius) which can lead, as for the isostatic pressure experiment, to a tunability of the metal-insulator transition temperature [14, 15]. Obradors et al [13] reported on a decrease of T MIT upon increasing isostatic pressure but with remaining metallic properties of PrNi03 and NdNi03 (same magnitude and thermal dependence of the electrical resistivity)
|
109 |
Anion Diffusion in Two-Dimensional Halide PerovskitesAkriti (12355252) 20 April 2022 (has links)
<p>Technological advancements in
electronics industry are driven by innovations in device fabrication techniques
and development of novel materials. Halide perovskites are one of the latest
additions to the semiconductor family. The performance of solid-state devices
based on halide perovskites is now competing with other well-established
semiconductors like silicon and gallium arsenide. However, the intrinsic
instability of three-dimensional (3D) perovskites poses a great challenge in
their widespread commercialization. The soft crystal lattice of hybrid halide
perovskites facilitates anionic diffusion which impacts material stability,
optoelectronic properties, and solid-state device performance.</p>
<p>Two-dimensional (2D) halide
perovskites with organic capping layers have been used for improving the
extrinsic stability as well as suppressing intrinsic anionic diffusion.
Nevertheless, a fundamental understanding of the role of compositional tuning,
especially the impact of organic cations, in inhibiting anionic diffusion
across the perovskite-ligand interface is missing. In our research, we first
developed a library of atomically sharp and flat 2D heterostructures between
two arbitrarily determined phase-pure halide perovskite single crystals. This
platform was then used to perform a systematic investigation of anionic
diffusion mechanism and quantify the impact of structural components on anionic
inter-diffusion in halide perovskites. </p>
<p>Stark differences were observed in
anionic diffusion across 2D halide perovskite lateral and vertical
heterostructures. Halide inter-diffusion in lateral heterostructures was found
to be similar to the classical Fickian diffusion featuring continuous
concentration profile evolution. However, vertical heterostructures show a
“quantized” layer-by-layer diffusion behavior governed by a local free energy
minimum and ion-blocking effects of the organic cations. For both lateral and
vertical migrations, halide diffusion was found to be faster in perovskites
with larger inorganic layer thickness. The increment becomes less apparent as
the inorganic layer thickness increases, akin to the quantum confinement effect
observed for band gaps. Furthermore, we found that bulkier and more rigid
π-conjugated organic cations inhibit halide inter-diffusion much more
effectively compared to short chain aliphatic cations. These results offer
significant insights into the mechanism of anionic diffusion in 2D perovskites
and provide a new materials platform for heterostructure assembly and device
integration.</p>
|
110 |
Characterization of as prepared and exposed Perovskitesolar cells by microscopic and spectroscopic techniquesGorella, Nagaraju January 2021 (has links)
Studying the microstructural features, optical, and electrical properties of the thin-filmperovskite solar cells (PSC) is the main objective of this thesis work. All the PSCs used in thisthesis work were prepared by spin coating assisted with gas quenching process and the samplesreceived from Interuniversity Microelectronics Centre (IMEC), Belgium.Microstructural and architectural details of the stagewise prepared PSCs were investigatedusing a Scanning Electron Microscope (SEM) - Focused Ion Beam (FIB) technique. With thereference to the given specification from IMEC, the SEM-FIB examinations of the as-preparedPSCs confirmed the presence of different layers such as hole transport layer (HTL), perovskitelayer, and electron transport layer (ETL). Further, the thickness of the perovskite layers wasmeasured and found to be 400 and 500 nm which validates the specification of the as-preparedsamples 1 and 2, respectively. The observed average grain size of the perovskite of the asprepared samples 1 and 2 are significantly different and the values are approximately 83 and169 nm, respectively. The average surface roughness values of perovskite layers (as-preparedsamples 1 and 2) and electron transport layer (as-prepared samples 3) were evaluated by atomicforce microscopy (AFM) and the values are 10, 19, and 12 nm, respectively. Furthermore, theconductive-AFM was performed to evaluate the electrical properties of the perovskite layers,and the results confirmed that the as-prepared sample 2 showed a higher mean current value of4.1 nA, than sample 1 resulted in 2.9 nA. The higher electrical performance of the as-preparedsample 2 could be correlated to the larger grain size, higher thickness, and higher surfaceroughness values of the perovskite layer.Moreover, the performance evaluation of a complete perovskite solar device with a similarconfiguration was evaluated between the as-prepared (newly fabricated) and the exposedsamples (tested under sunlight for ten weeks), and their behavior was studied. The optical andelectrical characteristics of the solar cell at the device level were examined with the help ofphotoluminescence (PL), electroluminescence (EL), and solar simulator techniques. The peakand fullwidth half maximum (FWHM) values of the PL emission spectra of the as-prepareddevice are in line with IMEC specification, whereas these values are slightly decreased for theexposed perovskite solar device. Also, during the EL examination, predominantly uniformluminescence was observed for the as-prepared device, whereas discontinuity in the emissionof electrons, and in some parts absence of luminescence-effect was observed for the exposedsolar cell. The current-voltage characteristics obtained from the solar simulator resultsconfirmed that the power conversion efficiency of the as-prepared device is at least 6 timeshigher than the exposed device. Based on the PL, EL, and PCE results it could be confirmedthat the perovskite solar cell exposed to sunlight for 10 weeks has started to degrade.
|
Page generated in 0.0606 seconds