Spelling suggestions: "subject:"peroxydisulfate"" "subject:"peroxymonosulfate""
1 |
Das Ag-Peroxodisulfat-System Grenzfläche und raumzeitliche Dynamik /Grauel, Peter. January 1999 (has links)
Berlin, Freie Universiẗat, Diss., 1999. / Dateiformat: zip, Dateien im PDF-Format.
|
2 |
Sustainable Mining - Solving the Problem of Chalcopyrite Treatment/Processing - Leaching, Solvent Extraction & FlotationDakubo, Francis January 2016 (has links)
Chalcopyrite ore forms the significant fraction of copper deposits in the earth crust. However, it is also the most difficult to treat using conventional ferric leaching methods. Smelting and electro-refining are currently the methods used in treating chalcopyrite concentrate obtained from froth flotation. Due to the ever increasing environmental requirements on smelters by the Environmental Protection Agency, new smelters are scarce in the United States. The scarcity of smelters has led to the urgent need to find a novel leaching method for the abundant chalcopyrite deposits in the USA and the rest of the world. This chapter(one) of the dissertation, therefore, investigated the leaching of chalcopyrite ore at pH 2 using a newly discovered oxidant (peroxodisulfate). Our results show that chalcopyrite leaching using peroxodisulfate follows a surface reaction shrinking core model. The activation energy of chalcopyrite leaching using peroxodisulfate ion was calculated as 41.1 kJ mol⁻¹. We also report that the leaching of chalcopyrite ore is affected by particle size and that stirring hurts leaching of chalcopyrite. Additionally, we found that peroxodisulfate can produce from sulfuric ions electrochemically. Hydrogen peroxide, permanganate, peroxodisulfate and ferric ions are all strong oxidants that have been researched in production pregnant leach solution (PLS) from chalcopyrite ore leaching. Because, solvent extraction is the next step in the recovery of copper from pregnant leach solutions (PLS). The questions, therefore, arises as to the fate of the organic extractant used in solvent extraction coming in contact with strong oxidant residual in the PLS. In chapter two of the dissertation, we studied the effect of strong oxidant residual in PLS on the degradation of organic extractants during solvent extraction of copper. Exposed organic extractants were analyzed using interfacial tension(IFT), Fourier Transform Infrared (FTIR) spectroscopy and CG LS. The results obtained from IFT and FTIR analysis, show no effect on the organic extractants exposed to sunlight and PLS containing the residual strong oxidant. Finally in chapter 3, the dissertation exams alternative water source for the flotation of chalcopyrite. Mineral flotation is a water-intensive process in mining. In order to sustain mining operations such flotation, which rely heavily on water, chapter 3 of the dissertation looks at using alternative water sources (in this case reclaimed wastewater) in the flotation of chalcopyrite ores; this effort is to limit the mining industries dependence on fresh ground water particularly in the Southwest of United States where water is a scarce commodity. The research studied the effect of reclaimed waste water on chalcopyrite flotation via contact angle and surface energy measurements. Furthermore, atomic force microscopy (AFM) and flotation tests were used to supplement the findings from contact angle and surface studies. We conclude here that the contact angle of a pure chalcopyrite surface was determined to be 75.6 degrees. We also found that pure chalcopyrite mineral surface is slightly polar with surface energies γCuFeS2^(LW) = 41.4 mJ/m² (apolar), γCuFeS2^(AB) = 2.9 mJ/m² (polar). The high value of the surface energy indicates pure chalcopyrite surface is slightly hydrophobic.
|
Page generated in 0.0398 seconds