• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stationary solutions of linear ODEs with a randomly perturbed system matrix and additive noise

Starkloff, Hans-Jörg, Wunderlich, Ralf 07 October 2005 (has links) (PDF)
The paper considers systems of linear first-order ODEs with a randomly perturbed system matrix and stationary additive noise. For the description of the long-term behavior of such systems it is necessary to study their stationary solutions. We deal with conditions for the existence of stationary solutions as well as with their representations and the computation of their moment functions. Assuming small perturbations of the system matrix we apply perturbation techniques to find series representations of the stationary solutions and give asymptotic expansions for their first- and second-order moment functions. We illustrate the findings with a numerical example of a scalar ODE, for which the moment functions of the stationary solution still can be computed explicitly. This allows the assessment of the goodness of the approximations found from the derived asymptotic expansions.
2

Analyse et synthèse de multimodèles pour le diagnostic : application à une station d’épuration / Analysis and synthesis of multiple models for diagnosis : application to a wastewater treatment plant

Nagy-Kiss, Anca Maria 26 November 2010 (has links)
Cette thèse traite de l’analyse et de la synthèse de multimodèles pour la simplification de modèles, l’estimation d’état et le diagnostic des systèmes non linéaires caractérisés par une ou plusieurs échelles de temps. Ces travaux visent, dans un premier temps, à développer une procédure systématique de transformation d’un système non-linéaire en le récrivant sous une forme multimodèle, en évitant quelques inconvénients majeurs : la transformation est réalisée sans perte d’information, le choix de différents points de fonctionnement n’est plus nécessaire, le choix de variables de prémisse est réalisé d’une façon systématique. De plus, la méthode offre le choix entre différents multimodèles. Ce degré de liberté sera utilisé pour faciliter les études de contrôlabilité, d’observabilité et d’analyse de stabilité. Dans un deuxième temps, l’obtention de la forme à perturbations singulières d’un système non linéaire est proposée, en éliminant quelques contraintes structurelles et en rendant l’identification et la séparation des échelles de temps indépendante de la structure du modèle. Dans un troisième temps, la synthèse de plusieurs observateurs robustes vis-à-vis des perturbations, des erreurs de modélisation et des entrées inconnues a été réalisée afin dereconstruire l’état et l’entrée inconnue du système. La difficulté de cette étude provient du fait que le multimodèle utilisé dépend de variables de prémisse non mesurables, situation qui n’est pas intensivement étudiée, alors qu’elle est naturellement issue de l’approche par transformation système non linéaire!multimodèle. Ensuite, le diagnostic de défauts de systèmes est réalisé au moyen de bancs d’observateur à entrées inconnues permettant la génération et la structuration de résidus indicateurs de défauts. Finalement, tous les travaux proposés sont appliqués au modèle d’une station d’´epuration, Activated Sludge Model No.1, qui est largement utilisé dans le domaine du traitement des eaux usées / This thesis deals with analysis and synthesis of multiple model structures for model simplification, state estimation and diagnosis of nonlinear systems represented by one or several time-scales. This work aims, at first, to develop a systematic procedure to transform a nonlinear system into a multiple model form, by avoiding some major drawbacks : the transformation causes no information loss, the choice of the different operating points is no more necessary, the choice of the premise variables is realized in a more systematic way. Furthermore, the method gives the possibility of choosing between different multiplemodel structures. This degree of freedom will be used to ease the controllability, observ-ability, stability analysis studies. Secondly, the derivation of a singularly perturbed form for a multiple time scale non linear system is proposed, by eliminating some structuralconstraints and by making the identification and the separation of the time-scales independent to the model structure. Thirdly, the robust observer synthesis with respect to perturbations, modeling errors and unknown inputs are presented for state and unknowninput estimation. The difficulty of these studies comes from the fact that the multiple model depends on unmeasurable premise variables, this case being not intensively studied, whereas it results naturally from the method of transformation nonlinear system - multiple model. Afterward, fault diagnosis is performed using banks of observer to generate andstructure residual signals. Finally, this works are applied to a model of wastewater treatment plant, Activated Sludge Model No.1 (ASM1) that is largely used in the concerned fiel
3

Stationary solutions of linear ODEs with a randomly perturbed system matrix and additive noise

Starkloff, Hans-Jörg, Wunderlich, Ralf 07 October 2005 (has links)
The paper considers systems of linear first-order ODEs with a randomly perturbed system matrix and stationary additive noise. For the description of the long-term behavior of such systems it is necessary to study their stationary solutions. We deal with conditions for the existence of stationary solutions as well as with their representations and the computation of their moment functions. Assuming small perturbations of the system matrix we apply perturbation techniques to find series representations of the stationary solutions and give asymptotic expansions for their first- and second-order moment functions. We illustrate the findings with a numerical example of a scalar ODE, for which the moment functions of the stationary solution still can be computed explicitly. This allows the assessment of the goodness of the approximations found from the derived asymptotic expansions.

Page generated in 0.0679 seconds