• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 6
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 38
  • 31
  • 19
  • 12
  • 12
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Higher Order Accurate Finite Element Method for Viscous Compressible Flows

Bonhaus, Daryl Lawrence 11 May 1998 (has links)
The Streamline Upwind/Petrov-Galerkin (SU/PG) method is applied to higher-order finite-element discretizations of the Euler equations in one dimension and the Navier-Stokes equations in two dimensions. The unknown flow quantities are discretized on meshes of triangular elements using triangular Bezier patches. The nonlinear residual equations are solved using an approximate Newton method with a pseudotime term. The resulting linear system is solved using the Generalized Minimum Residual algorithm with block diagonal preconditioning. The exact solutions of Ringleb flow and Couette flow are used to quantitatively establish the spatial convergence rate of each discretization. Examples of inviscid flows including subsonic flow past a parabolic bump on a wall and subsonic and transonic flows past a NACA 0012 airfoil and laminar flows including flow past a a flat plate and flow past a NACA 0012 airfoil are included to qualitatively evaluate the accuracy of the discretizations. The scheme achieves higher order accuracy without modification. Based on the test cases presented, significant improvement of the solution can be expected using the higher-order schemes with little or no increase in computational requirements. The nonlinear system also converges at a higher rate as the order of accuracy is increased for the same number of degrees of freedom; however, the linear system becomes more difficult to solve. Several avenues of future research based on the results of the study are identified, including improvement of the SU/PG formulation, development of more general grid generation strategies for higher order elements, the addition of a turbulence model to extend the method to high Reynolds number flows, and extension of the method to three-dimensional flows. An appendix is included in which the method is applied to inviscid flows in three dimensions. The three-dimensional results are preliminary but consistent with the findings based on the two-dimensional scheme. / Ph. D.
2

A novel approach to image derivative approximation using finite element methods

Herron, Madonna Geradine January 1998 (has links)
No description available.
3

Méthode combinée volumes finis et meshless local Petrov Galerkin appliquée au calcul de structures / Combined method finite volume and meshless local Petrov Galerkin applied in structural calculations

Moosavi, Mohammad-Reza 12 November 2008 (has links)
Ce travail porte sur le développement d’une nouvelle méthode numérique intitulée « Meshless local Petrov Galerkin (MLPG) combinée à la méthode des volumes finis (MVF) » appliquée au calcul de structures. Elle est basée sur la résolution de la forme faible des équations aux dérivées partielles par une méthode de Petrov Galerkin comme en éléments finis, mais par contre l’approximation du champ de déplacement introduite dans la forme faible ne nécessite pas de maillage. Seul un ensemble de nœuds est réparti dans le domaine et l’approximation du champ de déplacement en un point ne dépend que de la distance de ce point par rapport aux nœuds qui l’entourent et non de l’appartenance à un certain élément fini. Les déformations et les déplacements sont déterminés aux différents nœuds par interpolation locale en utilisant les moindres carrés mobiles (MLS). Les valeurs des déformations aux nœuds sont exprimées en termes de valeurs nodales interpolées indépendamment des déplacements, en imposant simplement la relation déformation déplacement directement par collocation aux points nodaux. La procédure de calcul pour cette méthode est implémentée dans un programme de calcul développé sous MATLAB. Le code obtenu a été validé sur un certain nombre de cas tests par comparaison avec des solutions analytiques de référence et des calculs éléments finis comme ABAQUS. L’ensemble de ces tests a montré un bon comportement de la méthode (environs 0.0001% d’erreurs par rapport à la solution exacte). L’approche est étendue pour l’étude des poutres minces et pour l’analyse dynamique et stabilité. / This work concerns the development of a new numerical method entitled “Meshless Local Petrov- Galerkin (MLPG) combined with the Finite Volumes Method (FVM)” applied to the structural analysis. It is based on the resolution of the weak form of the partial differential equations by a method of Petrov Galerkin as in finite elements, but the approximation of the field of displacement introduced into the weak form does not require grid. The displacements and strains are given with the various nodes by local interpolation by using moving least squares (MLS). The values of the nodal strains are expressed in terms of interpolated nodal values independently of displacements, by simply imposing the strain displacement relationship directly by collocation at the nodal points. The procedure of calculation for this method is implemented in a computer code developed in MATLAB. The developed code was validated on a certain number of test cases by comparison with analytical solutions and finite elements results like ABAQUS. The whole of these tests showed a good behaviour of the method (about 0.0001% of errors in compared to the exact solution). The approach is also extended for the study of the thin beams and the dynamic analysis and stability.
4

Lorentz Homogeneous Spaces and the Petrov Classification

Bowers, Adam 01 May 2004 (has links)
A. Z. Petrov gave a complete list of all local group actions on a four-dimensional space-time that admit an invariant Lorentz metric, up to an equivalence relation. His list was compiled by directly constructing all possible Lie algebras of infinitesimal generators of group actions that preserve a Lorentz metric. The goal of this paper was to verify that classification by algebraically constructing a list of all possible three-dimensional homogeneous spaces and calculating which among them have a non-degenerate invariant metric.
5

Simulação numérica de escoamentos: uma implementação com o método Petrov-Galerkin. / Numerical simulation of flows: an implementation with the Petrov-Galerkin method.

Hwang, Eduardo 07 April 2008 (has links)
O método SUPG (\"Streamline Upwind Petrov-Galerkin\") é analisado quanto a sua capacidade de estabilizar oscilações numéricas decorrentes de escoamentos convectivo-difusivos, e de manter a consistência nos resultados. Para esta finalidade, é elaborado um programa computacional como uma implementação algorítmica do método, e simulado o escoamento sobre um cilindro fixo a diferentes números de Reynolds. Ao final, é feita uma revelação sobre a solidez do método. Palavras-chave: escoamento, simulação numérica, método Petrov- Galerkin. / The \"Streamline Upwind Petrov-Galerkin\" method (SUPG) is analyzed with regard to its capability to stabilize numerical oscillations caused by convective-diffusive flows, and to maintain consistency in the results. To this aim, a computational program is elaborated as an algorithmic implementation of the method, and simulated the flow around a fixed cylinder at different Reynolds numbers. At the end, a revelation is made on the method\'s robustness. Keywords: flow, numerical simulation, Petrov-Galerkin method.
6

Simulação numérica de escoamentos: uma implementação com o método Petrov-Galerkin. / Numerical simulation of flows: an implementation with the Petrov-Galerkin method.

Eduardo Hwang 07 April 2008 (has links)
O método SUPG (\"Streamline Upwind Petrov-Galerkin\") é analisado quanto a sua capacidade de estabilizar oscilações numéricas decorrentes de escoamentos convectivo-difusivos, e de manter a consistência nos resultados. Para esta finalidade, é elaborado um programa computacional como uma implementação algorítmica do método, e simulado o escoamento sobre um cilindro fixo a diferentes números de Reynolds. Ao final, é feita uma revelação sobre a solidez do método. Palavras-chave: escoamento, simulação numérica, método Petrov- Galerkin. / The \"Streamline Upwind Petrov-Galerkin\" method (SUPG) is analyzed with regard to its capability to stabilize numerical oscillations caused by convective-diffusive flows, and to maintain consistency in the results. To this aim, a computational program is elaborated as an algorithmic implementation of the method, and simulated the flow around a fixed cylinder at different Reynolds numbers. At the end, a revelation is made on the method\'s robustness. Keywords: flow, numerical simulation, Petrov-Galerkin method.
7

Petrov - galerkin finite element formulations for incompressible viscous flows

Sampaio, Paulo Augusto Berquó de, Instituto de Engenharia Nuclear 09 1900 (has links)
Submitted by Marcele Costal de Castro (costalcastro@gmail.com) on 2017-10-04T17:13:38Z No. of bitstreams: 1 PAULO AUGUSTO BERQUÓ DE SAMPAIO D.pdf: 6576641 bytes, checksum: 71355f6eedcf668b2236d4c10f1a2551 (MD5) / Made available in DSpace on 2017-10-04T17:13:38Z (GMT). No. of bitstreams: 1 PAULO AUGUSTO BERQUÓ DE SAMPAIO D.pdf: 6576641 bytes, checksum: 71355f6eedcf668b2236d4c10f1a2551 (MD5) Previous issue date: 1991-09 / The basic difficulties associated with the numerical solution of the incompressible Navier-Stokes equations in primitive variables are identified and analysed. These difficulties, namely the lack of self-adjointness of the flow equations and the requirement of choosing compatible interpolations for velocity and pressure, are addressed with the development of consistent Petrov-Galerkin formulations. In particular, the solution of incompressible viscous flow problems using simple equal order interpolation for all variables becomes possible .
8

Adjoint-based error estimation for adaptive Petrov-Galerkin finite element methods: Application to the Euler equations for inviscid compressible flows

D'Angelo, Stefano 24 March 2015 (has links)
The current work concerns the study and the implementation of a modern algorithm for a posteriori error estimation in Computational Fluid Dynamics (CFD) simulations based on partial differential equations (PDEs). The estimate involves the use of duality argument and proper consistent discretisation of primal and dual problem.A key element is the construction of the adjoint form of the primal differential operators where the data term is a quantity of interest depending on the application. In engineering, this is typically a physical functional of the solution. So, by solving this adjoint problem, it is possible to obtain important information about local sensitivity of the error with respect to the current target quantity and thereby, we are able to perform an a posteriori error representation based on adjoint data. Through this, we provide local error indicators which can drive an adaptive meshing algorithm in order to optimally reduce the target error. Therefore, we first derive and solve the discrete primal problem in agreementwith the chosen numerical method. According to consistency and compatibility conditions, we can use the same discretisation for solving the adjoint problem, simply by swapping the position of the unknowns and the test functions in the linearised variational operator. Remembering that the corresponding adjoint problem always remains linear, the computational cost for obtaining these data is limited compared to the effort needed to solve the primal nonlinear problem.This procedure, fully developed for Discontinuous Galerkin (DG) and Finite Volume (FV) methods, is here for the first time applied in a fully consistent way for Petrov-Galerkin (PG) discretisations. Differently from the latter, the biggest issue for the PG method becomes the need to handle two different functional spaces in the discretisation, one of which is often not even continuous. Stabilized finite element schemes such as Streamline Upwind (SUPG), bubble stabilized (BUBBLE) Petrov-Galerkin and stabilized Residual Distribution (RD) have been selected for implementation and testing. Indeed, based on local advection information, these schemes are naturally more suitable for solving hyperbolic problems and therefore, interesting alternatives for fluid dynamics applications.A scalar linear advection equation is used as a model problem for convergence rate of both primal and adjoint solutions and target quantity. In addition, it is also applied in order to verify the accuracy of the adjoint-based a posteriori error estimate. Next, we apply the methods to a complete collection of numerical examples, starting from scalar Burgers’ problem till 2D compressible Euler equations. Through suited quantities of interest, we illustrate aspects of the adjoint mesh refinement by comparing its efficiency with respect to the standard a posteriori error estimation. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
9

Recycling Bi-Lanczos Algorithms: BiCG, CGS, and BiCGSTAB

Ahuja, Kapil 21 September 2009 (has links)
Engineering problems frequently require solving a sequence of dual linear systems. This paper introduces recycling BiCG, that recycles the Krylov subspace from one pair of linear systems to the next pair. Augmented bi-Lanczos algorithm and modified two-term recurrence are developed for using the recycle space. Recycle space is built from the approximate invariant subspace corresponding to eigenvalues close to the origin. Recycling approach is extended to the CGS and the BiCGSTAB algorithms. Experiments on a convection-diffusion problem give promising results. / Master of Science
10

Contributions to the Study of the Validity of Huygens' Principle for the Non-self-adjoint Scalar Wave Equation on Petrov Type D Spacetimes

Chu, Kenneth January 2000 (has links)
This thesis makes contributions to the solution of Hadamard's problem through an examination of the question of the validity of Huygens'principle for the non-self-adjoint scalar wave equation on a Petrov type D spacetime. The problem is split into five further sub-cases based on the alignment of the Maxwell and Weyl principal spinors of the underlying spacetime. Two of these sub-cases are considered, one of which is proved to be incompatible with Huygens' principle, while for the other, it is shown that Huygens' principle implies that the two principal null congruences of the Weyl tensor are geodesic and shear-free. Furthermore, an unpublished result of McLenaghan regarding symmetric spacetimes of Petrov type D is independently verified. This result suggests the possible existence of counter-examples of the Carminati-McLenaghan conjecture.

Page generated in 0.0518 seconds