• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phage-host interactions in <em>Lactobacillus delbrueckii</em>: host recognition and transcription of early phage genes

Räisänen, L. (Liisa) 24 April 2007 (has links)
Abstract The scope of this study includes aspects of phage evolution and antagonistic/mutualistic coevolution between a phage and its host. As a basic study it may provide tools for developing phage resistant starters and offer regulatory elements and factors for biotechnological applications. The LL-H anti-receptor was characterized by isolation of spontaneous LL-H host range mutants and subsequent sequencing of candidate genes. All LL-H host range mutants carried a single point mutation at the 3' end of a minor tail protein encoding gene g71. The genomic location of g71 is congruent with the other verified anti-receptor genes found in the λ supergroup. The C-terminus of Gp71 determines the adsorption specificity of phage LL-H similarly for the number of phages infecting Gram-positive and Gram-negative bacteria. A Gp71 homolog of phage JCL1032 showed 62% identity to LL-H Gp71 within the last 300 amino acids at the C-terminus. Lactobacillus delbrueckii phage receptors were investigated by the purification of different cell surface structures. Certain Lb. delbrueckii phages from homology groups a and c including LL-H, LL-H host range mutants and JCL1032, were specifically inactivated by the LTAs. In structural analyses LTAs showed differences in the degree of α-glucosyl and ᴅ-alanyl substitution. α-glucose is necessary for LL-H adsorption. A high level of ᴅ-alanine esters in LTA backbones inhibited Lb. delbrueckii phage inactivation in general. Lysogenization of strain ATCC 15808 with the temperate phage JCL1032 revealed a rarely described coexistence of phage adsorption resistance and phage immunity, which could not be explained by lysogenic conversion. In this case the role of spontaneously induced JCL1032 may be significant. The LL-H early gene region was localized between the dysfunctional lysogeny module and the terminase encoding genes. The function of five ORFs could be connected to phage DNA replication and/or homologous recombination. Transcription of LL-H genes could be divided into two, possibly three, phases in which large gene clusters were sequentially transcribed. The intensity of the late transcripts exceeded the intensity of the early transcripts by several times. Two candidate genes for transcription regulators were found. One of the two candidates is the first ORF in the LL-H early gene region.
2

The use of bacteriophages as natural biocontrol agents against bacterial pathogens

Ameh, Ekwu Mark January 2016 (has links)
Bacteriophages are viruses that specifically infect bacteria. The bactericidal nature of lytic bacteriophages has been exploited by scientists for decades with the hope to utilise them in the fight against bacterial infections and antibiotic resistant bacteria in medical settings. More recently, the potential applications of bacteriophages for biocontrol in the agrifood and environmental sectors have been investigated in an attempt to develop ‘natural’ antimicrobial products. Bacteriophages have a couple of decisive advantages over conventional methods of controlling pathogenic bacteria, such as high host specificity, the ability to self-replicate, and the ability to evolve with their hosts. However, more research is needed to optimise the parameters for phage applications, including the impact of environmental conditions on lysis efficiency, multiplicity of infection, and to significantly minimise the emergence of bacterial resistance to phages. Temperature plays a key role in every biological activity in nature. It is also assumed that temperature has an effect on phage lysis efficiency. A comprehensive study of it and how it affects both the host cells and their corresponding phages is crucial to ensure the efficient removal of bacterial pathogens. In this thesis, temperature (as selected parameter) was investigated to determine its influence on the lysis effectiveness of the three different phages belonging to the family of the Myoviridea that were isolated and purified from a single water sample taken from a brook receiving treated wastewater. We used the multiplicity of infection of 1 in all of our study in this project. Temperature was found to have a significant impact on phage-mediated lysis efficiency. Both the temperature of incubation of the phage-bacteria mixture (incubation temperature) and the temperature history of bacterial hosts were found to have profound effects on plaque sizes as well as plaque numbers. Plaque size and number decreased with increasing temperature. For the phages examined, bacterial lysis was more efficient at 20°C compared to 30 or 37°C. Phages were suggested to be well adapted to the environment where they were isolated from with general implications for use in biological disinfection. Furthermore, the temperature history of the bacteria (prior to phage encounter) was found to have a modulating effect on their susceptibility to lysis. A second part of this study compared the performance of the three phages in regard to bacterial resistance. The emergence of bacterial resistance is a major obstacle to the success of bacteriophages applications. The use of multiple phages is typically recommended and has proven better than the use of a single phage. However, the bestway to perform phage treatment is still very unclear. This study therefore compared simultaneous addition of multiple phages (in form of a cocktail) with the sequential addition of the individual phages at different time points in trying to delay the emergence of bacterial resistance. The data obtained from this work suggest that lysis effectiveness can be adjusted to optimize any treatment goal. For fast initial bacterial clearance the use of a single phage with short time maximal lysis efficiency proved most efficient, while the simultaneous addition of phages in the form of a cocktail was most successful strategy in our study. Addition of selected phages sequentially can be normalized in such a way that is just as effective as a cocktail. A third part of this thesis looked into the susceptibility of bacteria that had undergone sublethal disinfection. We addressed the question whether bacteria subjected to sublethal doses of chlorine and UV are still susceptible to phage-mediated lysis. The chlorine treatments indicated the development of a phage-insensitive phenotype for a critical chlorine dose in the transition zone between live and dead. The remaining live (and culturable) bacteria were shown insensitive to the selected phage. The lowest UV exposure at 2.8 mJ/cm2 eliminated bacteria susceptibility to the phages. This phage- resistant phenotype may have serious consequences for the application of phages on foods or water that have previously undergone a weak disinfection regime.
3

Genetic variation and evolution among industrially important <em>Lactobacillus</em> bacteriophages

Riipinen, K.-A. (Katja-Anneli) 07 December 2011 (has links)
Abstract Species of Lactobacillus (L.) are important starter and probiotic lactic acid bacteria used in the dairy industry. Industrial fermentation processes are prone to phage infections, which can cause severe economic losses. The main objective of this thesis was to examine in more depth the genetic variation and evolution of L. delbrueckii and L. rhamnosus phages. Aspects of interactions and co-evolution of a phage and its host have also been included in this study. In this study, the complete genomic DNA sequences of four Lactobacillus phages were determined and analyzed in detail. Specific phage genes and genetic elements were identified and studied in more depth. The L. delbrueckii phage JCL1032 was found to be a temperate phage which is able to integrate into two distinct genes of L. delbrueckii, but with exceptionally low frequency. The isolated JCL1032-lysogenic bacteria expressed a complex phage resistance against several L. delbrueckii phages. The rarely reported coexistence of phage adsorption resistance and immunity could not be explained by lysogenic conversion. Instead, the spontaneously induced JCL1032 may have provided a selective advantage to adsorption resistant lysogens. The biological activity of two group I introns residing within the terminase large subunit and tape measure genes of the JCL1032 genome (49,433 bp) was demonstrated. The diversification of L. delbrueckii phages is mainly due to insertions, deletions and recombination, as was demonstrated by comparative analyses of the LL-Ku and c5 genomes of 31,080 bp and 31,841 bp, respectively. Interestingly, both phages have possible autonomous transcription units of genes within their genomes. It seemed that evolution of the 36,366-bp genome of the L. casei phage Lc-Nu has been fuelled by deletions as well. The lytic phage Lc-Nu has an imperfect lysogeny module and the phage is genetically closely related to L. casei prophages. This clearly demonstrated that Lc-Nu has a recent temperate origin. This study provides genetic tools, genes, and regulatory elements for biotechnological applications and for developing starter strains with enhanced phage resistance properties. / Tiivistelmä Hapatteina ja probiootteina käytetyt Lactobacillus-maitohappobakteerit (L. ) ovat merkittävässä asemassa meijeriteollisuudessa. Teolliset käymisprosessit ovat alttiita faagi-infektioille, jotka voivat aiheuttaa tuotantolaitoksille huomattavia taloudellisia tappioita. Tämän tutkimuksen päätavoitteena oli syventää tietoa L. delbrueckii ja L. rhamnosus -bakteereita infektoivien faagien geneettisestä muuntelusta ja evoluutiosta. Tutkimuksessa käsitellään myös faagin ja isäntäbakteerin välistä vuorovaikutusta sekä yhteisevoluutiota. Tutkimuksessa määritettiin neljän Lactobacillus-faagin genominen DNA-sekvenssi, identifioitiin faagigeenejä ja muita geneettisiä elementtejä sekä tutkittiin niiden toimintaa. L. delbrueckiin JCL1032-faagi osoittautui tutkimuksessa temperaatiksi. JCL1032-genomi voi integroitua kahteen eri geeniin isäntäbakteerin kromosomissa, joskin lysogeniafrekvenssi on hyvin alhainen. Tutkimuksessa eristetyt JCL1032-lysogeeniset bakteerikannat olivat resistenttejä useille Lactobacillus-faageille. Osassa lysogeenisia bakteereita resistenssi ilmeni jo faagin adsorptiovaiheessa. Vastaavanlainen ilmiö on kuvattu vain harvoin aiemmin. Havaittua kompleksista resistenssiä ei voitu selittää lysogeenisella konversiolla. Sen sijaan ilmiön taustalla voi olla JCL1032-profaagien spontaani indusoituminen bakteerin kromosomista, mikä voi antaa valintaetua adsorptioresistenteille lysogeenisille bakteereille. JCL1032-genomissa (49 433 emäsparia) osoitettiin olevan kaksi biologisesti aktiivista intronia terminaasin suurta alayksikköa ja hännän mittaproteiinia koodaavissa geeneissä. LL Ku- ja c5-faagien genomien (31 080 ja 31 841 emäsparia) vertailu osoitti L. delbrueckii -faagien evoluution olevan pääasiassa seurausta insertioista, deleetioista ja rekombinaatiosta. Kummassakin genomissa oli mahdollisesti päällekkäisiä ja itsenäisesti transkriptoituvia geenialueita. Deleetiot ovat muokanneet myös L. casein lyyttisen Lc- Nu-faagin genomia (36 466 emäsparia). Faagin lysogeniamoduuli sisälsi vain osan lysogeeniseen elinkiertoon tarvittavista geeneistä. Lc-Nu on geneettisesti läheistä sukua L. casei -profaageille, mikä myös viittaa siihen, että Lc-Nu on kehittynyt temperaatista faagista. Tutkimustuloksia faagien geeneistä ja säätelyelementeistä voidaan hyödyntää hapatebakteerien faagiresistenssiominaisuuksien kehittämisessä sekä erilaisissa bioteknologisissa sovelluksissa.

Page generated in 0.1814 seconds