1 |
Příprava farmaceutických formulací na bázi polymerních a lipidických nosičů / Preparation of pharmaceutical formulations based on polymeric and lipid carriersKubačková, Jana January 2021 (has links)
Charles University, Faculty of Pharmacy in Hradec Králové Department of Pharmaceutical Technology Candidate Mgr. Jana Kubačková Supervisor Assoc. Prof. Jarmila Zbytovská, Mgr., Dr. rer. nat. Co-supervisor PharmDr. Ondřej Holas, PhD. Title of Doctoral Thesis Preparation of pharmaceutical formulations based on polymeric and lipid carriers Nanomedicine allows application of nanoscaled drug delivery carriers to achieve a therapy that can be tailored in terms of e.g. controlled release, site-specific delivery and protection of an active substance. From multiple nanoplatforms available for drug delivery, advantage was taken of biocompatible and biodegradable polymers and lipids to enable targeted intracellular delivery, delivery of a poorly water-soluble drug and delivery of a sensitive macromolecule. In the study with biodegradable polymeric nanomaterial we worked with experimental poly(lactic-co-glycolic acid) (PLGA) polymers. The formulations were optimised for targeting to phagocytic macrophages - of size up to 300 nm and negative surface charge. For this purpose, two linear and one branched PLGA were screened in combination with one of four surfactants in low concentrations (0.1-1%). These PLGA polymers were formulated into nanoparticles and loaded with a hydrophilic fluorescent dye Rhodamine B...
|
2 |
Molecular interactions of biologically active derivatives of sulfamide with pharmaceutical polymers in solid stateYam, Noymi 01 January 2009 (has links) (PDF)
Molecular interactions of small molecules with polymers in solid state have numerous applications in pharmaceutical research. This dissertation examines the mechanism of the solid state interactions of the biologically active sulfamide derivatives with polyethylene glycol (PEG) and structurally related polymers. It is shown that in addition to the formation of the eutectic systems, PEG and related polymers cause polymorphic transitions of sulfamide derivatives. A new polymorphic form of a model sulfamate, topiramate, has been discovered and characterized using multiple analytical techniques. The phase diagrams describing the interactions of Topiramate with PEG and poloxamer block copolymer in solid state were constructed and the mechanism of the polymorphic transformations has been proposed. It was concluded that formation and stabilization of the new polymorphs occurred due to rearrangement of the hydrogen bonding networks of the sulfamide derivatives caused by the conformational changes of the polymer chains.
|
3 |
A Combined Rheological and Thermomechanical Analysis Approach for the Assessment of Pharmaceutical Polymer BlendsIsreb, Mohammad, Chalkia, Marianiki, Gough, Tim, Forbes, Robert T., Timmins, Peter 08 September 2022 (has links)
Yes / The viscoelastic nature of polymeric formulations utilised in drug products imparts unique thermomechanical attributes during manufacturing and over the shelf life of the product. Nevertheless, it adds to the challenge of understanding the precise mechanistic behaviour of the product at the microscopic and macroscopic level during each step of the process. Current thermomechanical and rheological characterisation techniques are limited to assessing polymer performance to a single phase and are especially hindered when the polymers are undergoing thermomechanical transitions. Since pharmaceutical processing can occur at these transition conditions, this study successfully proposes a thermomechanical characterisation approach combining both mechanical and rheological data to construct a comprehensive profiling of polymeric materials spanning both glassy and rubbery phases. This approach has been used in this study to assess the mechanical and rheological behaviour of heterogenous polymer blends of hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose (HPMC) over a shearing rate range of 0.1–100 s−1 and a temperature range of 30–200 °C. The results indicate that HPC and HPMC do not appear to interact when mixing and that their mixture exhibits the mechanistic properties of the two individual polymers in accordance with their ratio in the mixture. The ability to characterise the behaviour of the polymers and their mixtures before, throughout, and after the glassy to rubbery phase transition by application of the combined techniques provides a unique insight towards a quality-by-design approach to this and other polymer-based solid dosage forms, designed with the potential to accelerate their formulation process through obviating the need for multiple formulation trials.
|
4 |
Thermal and rheological approaches for the systematic enhancement of pharmaceutical polymeric coating formulations : effects of additives on glass transition temperature, dynamic mechanical properties and coating performance in aqueous and solvent-free coating process using DSC, shear rheometry, dissolution, light profilometry and dynamic mechanical analysisIsreb, Mohammad January 2011 (has links)
Additives, incorporated in film coating formulations, and their process parameters are generally selected using a trial-and-error approach. However, coating problems and defects, especially those associated with aqueous coating systems, indicate the necessity of embracing a quality-by-design approach to identify the optimum coating parameters. In this study, the feasibility of using thermal and rheological measurements to help evaluate and design novel coating formulations has been investigated. Hydroxypropyl methylcellulose acetate succinate (HPMCAS), an enteric coating polymer, was used as the film forming polymer. Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), and Parallel Plate Shear Rheometery (PPSR) were used to evaluate the effect of different plasticisers on the performance of HPMCAS. The results illustrate that, for identical formulations, the DSC and DMA methods yielded up to 40% differences in glass transition temperature (Tg) values. Moreover, Tg measured using loss modulus signals were always 20-30 oC less than those measured using tan delta results in DMA testing. Absolute and relative Tg values can significantly vary depending on the geometry of the samples, clamp size, temperature ramping rate and the frequency of the oscillations. Complex viscosity data for different formulations demonstrated a variable shear thinning behaviour and a Tg independent ranking. It is, therefore, insufficient to rely purely on Tg values to determine the relative performance of additives. In addition, complex viscosity results, obtained using both the DMA and PPSR techniques at similar temperatures, are shown to be comparable. The results from both techniques were therefore used to produce continuous master curves for the HPMCAS formulations. Additionally, step strain tests showed that HPMCAS chains do not fully III disentangle after 105 seconds as predicted by the Maxwell model. Finally, in situ aqueous-based coating experiments proved that mixtures of triethyl acetyl citrate and acetylated monoglyceride (TEAC/AMG), even without cooling of the suspension, do not cause blocking of the spray nozzle whereas triethyl citrate (TEC) based formulae did. TEAC (alone or in a combination with AMG) exhibits superior wettability to HPMCAS than TEC/AMG formulations and can be used to enhance the efficiency and film quality of the dry coating process.
|
5 |
Thermal and rheological approaches for the systematic enhancement of pharmaceutical polymeric coating formulations. Effects of additives on glass transition temperature, dynamic mechanical properties and coating performance in aqueous and solvent-free coating process using DSC, shear rheometry, dissolution, light profilometry and dynamic mechanical analysis.Isreb, Mohammad January 2011 (has links)
Additives, incorporated in film coating formulations, and their process
parameters are generally selected using a trial-and-error approach. However,
coating problems and defects, especially those associated with aqueous
coating systems, indicate the necessity of embracing a quality-by-design
approach to identify the optimum coating parameters. In this study, the
feasibility of using thermal and rheological measurements to help evaluate and
design novel coating formulations has been investigated. Hydroxypropyl
methylcellulose acetate succinate (HPMCAS), an enteric coating polymer, was
used as the film forming polymer. Differential Scanning Calorimetry (DSC),
Dynamic Mechanical Analysis (DMA), and Parallel Plate Shear Rheometery
(PPSR) were used to evaluate the effect of different plasticisers on the
performance of HPMCAS. The results illustrate that, for identical formulations,
the DSC and DMA methods yielded up to 40% differences in glass transition
temperature (Tg) values. Moreover, Tg measured using loss modulus signals
were always 20-30 oC less than those measured using tan delta results in DMA
testing. Absolute and relative Tg values can significantly vary depending on the
geometry of the samples, clamp size, temperature ramping rate and the
frequency of the oscillations. Complex viscosity data for different formulations
demonstrated a variable shear thinning behaviour and a Tg independent
ranking. It is, therefore, insufficient to rely purely on Tg values to determine the
relative performance of additives. In addition, complex viscosity results,
obtained using both the DMA and PPSR techniques at similar temperatures, are
shown to be comparable. The results from both techniques were therefore used
to produce continuous master curves for the HPMCAS formulations.
Additionally, step strain tests showed that HPMCAS chains do not fully
III
disentangle after 105 seconds as predicted by the Maxwell model. Finally, in situ aqueous-based coating experiments proved that mixtures of triethyl acetyl citrate and acetylated monoglyceride (TEAC/AMG), even without cooling of the suspension, do not cause blocking of the spray nozzle whereas triethyl citrate (TEC) based formulae did. TEAC (alone or in a combination with AMG) exhibits superior wettability to HPMCAS than TEC/AMG formulations and can be used to enhance the efficiency and film quality of the dry coating process.
|
Page generated in 0.078 seconds