• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 8
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 20
  • 11
  • 11
  • 11
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Numerické metody registrace obrazů s využitím nelineární geometrické transformace / Numerical Method of Image Registration Using Nonlinear Geometric Transform

Stodola, Jakub Unknown Date (has links)
The goal of the thesis is to find general nonlinear geometric transformation, which compensates irregular deformation of images, so that they could be registered. In the introductory part, necessary mathematical tools are stated, especially convolution, correlation and Fourier transform. In the next part, method of phase correlation is stated, followed by algorithms used for finding the geometric transformation. Those algorithms are implemented in computer program, that is included.
22

Analýza vlivu uspořádání kolagenu na mechanické vlastnosti tepen / Analysis of Influence of Collagen Organization on Mechanical Properties of Arteries

Novák, Kamil January 2018 (has links)
This dissertation thesis concerns with Analysis of Influence of Collagen Organization on Mechanical Properties of Arteries and it is divided into three main parts. Motivation for this dissertation thesis was in a study reviewing effect of material model upon resulting stresses in AAA. The effect was calculated in 70 patient-specific geometries of AAA, which exceeds the number of geometries in other scientific papers by one order. Within this study, two material models were used, i.e. real one and 100× stiffer, and obtained stresses were mutually compared. It was quantified that peak stress difference can be higher than 20 % in 10% of patients and therefore the real material model should be preferred over the artificial one although operation with this model is more demanding. The second part of this thesis deals with an identification of structural parameters (orientation and dispersion of collagen fibres) of porcine aortic tissue by using adjusted Fast Fourier Transform based algorithm. The extracted structural parameters were inserted into two-layer structure-motivated constitutive model Martufi-Gasser. This model was validated and its predictive capabilities were also tested with fine results. The most important information obtained from the digital image processing of ~9000 micrographs is existence of only one family of dispersed collagen fibres which breaks the current dogma present in many scientific papers about two families of collagen fibres. The third part concerns with a proposal of an automated phase-correlation based algorithm for obtaining collagen fibre direction from polarized light microscopy images. The proposed algorithm was verified and validated and it yields histograms of collagen fibre directions with overall number of measured points larger than it would be possible to get from any manual measurement. The limitation of the original proposed algorithm is in 90° period of polarized light intensity, thus the method results in angles in the range of 0°–90. Therefore the end of the thesis is dedicated resolving this problem and obtaining real angles in a span of 0°–180°. To this end, the microscope set-up was changed and the algorithm was adjusted accordingly. The original and the adjusted algorithms are collagen-specific, fast and an operator independent. Despite all the author´s effort put into collagen fibre waviness quantification directly from the histograms, the waviness has not been quantified yet in this way and it remains at the stage of research.
23

Numerické metody zpracování obrazů z kosmické sondy NASA SDO / Numerical methods of image processing from NASA's SDO space probe

Meduňa, Tomáš January 2020 (has links)
Tato práce se zabývá zpracováním snímků Slunce pořízených kosmickou sondou SDO na různých vlnových délkách a vizualizací výskytu třikrát ionizovaného uhlíku C IV jejich vhodným složením. V práci jsou uvedeny základní informace o Slunci a jeho atmosféře, dále je shrnuta potřebná teorie a možné postupy vizualizace, které jsou následně vyhodnoceny a porovnány. Součástí je i vytvořený program pro snadnou tvorbu snímků vizualizujících uhlík C IV.
24

Zpracování snímků sítnice s vysokým rozlišením / Processing of high-resolution retinal images

Vraňáková, Sofia January 2021 (has links)
Diplomová práca je zameraná na spracovávanie obrazov sietnice s vysokým rozlíšením. Cieľom práce je zlepšiť výslednú kvalitu výsledných snímkov sietnice získaných zo sekvencie snímkov nižšej kvality. Jednotlivé snímky sú najskôr spracované pomocou bilaterálnej filtrácie a zlepšenia kontrastu. v ďalšom kroku sú odstránené rozmazané snímky a snímky zobrazujúce iné časti sietnice. Posun medzi jednotlivými snímkami v sekvencii sa odhaduje pomocou fázovej korelácie, a tieto obrazy sú potom fúzované do výsledného snímku s vysokým rozlíšením pomocou priemerovania a využitia superrozlišovacej techniky, presnejšie regularizácie pomocou bilaterálneho celkového rozptylu. Výsledné mediánové hodnoty skóre kvality získaných obrazov sú PIQUE 0.2600, NIQE 0.0701, a BRISQUE 0.3936 pre techniku priemerovania, a PIQUE 0.1063, NIQE 0.0507, and BRISQUE 0.1570 pre superrozlišovaciu techniku.
25

Zpracování obrazu mikroskopických vzorků / Microscope Image Processing

Janda, Ondřej January 2009 (has links)
This diploma thesis deals with image processing of microbiological data. Firstly the brief introduction to biological basics is given. Secondly we take focus on basic and used image processing methods. Integral part of this thesis is working application witch uses image processing methods on input data. Creating user interface for this application is also part of this work. Documentation is provided.
26

Semantic content analysis for effective video segmentation, summarisation and retrieval.

Ren, Jinchang January 2009 (has links)
This thesis focuses on four main research themes namely shot boundary detection, fast frame alignment, activity-driven video summarisation, and highlights based video annotation and retrieval. A number of novel algorithms have been proposed to address these issues, which can be highlighted as follows. Firstly, accurate and robust shot boundary detection is achieved through modelling of cuts into sub-categories and appearance based modelling of several gradual transitions, along with some novel features extracted from compressed video. Secondly, fast and robust frame alignment is achieved via the proposed subspace phase correlation (SPC) and an improved sub-pixel strategy. The SPC is proved to be insensitive to zero-mean-noise, and its gradient-based extension is even robust to non-zero-mean noise and can be used to deal with non-overlapped regions for robust image registration. Thirdly, hierarchical modelling of rush videos using formal language techniques is proposed, which can guide the modelling and removal of several kinds of junk frames as well as adaptive clustering of retakes. With an extracted activity level measurement, shot and sub-shot are detected for content-adaptive video summarisation. Fourthly, highlights based video annotation and retrieval is achieved, in which statistical modelling of skin pixel colours, knowledge-based shot detection, and improved determination of camera motion patterns are employed. Within these proposed techniques, one important principle is to integrate various kinds of feature evidence and to incorporate prior knowledge in modelling the given problems. High-level hierarchical representation is extracted from the original linear structure for effective management and content-based retrieval of video data. As most of the work is implemented in the compressed domain, one additional benefit is the achieved high efficiency, which will be useful for many online applications. / EU IST FP6 Project
27

Development of Robust Correlation Algorithms for Image Velocimetry using Advanced Filtering

Eckstein, Adric 18 January 2008 (has links)
Digital Particle Image Velocimetry (DPIV) is a planar measurement technique to measure the velocity within a fluid by correlating the motion of flow tracers over a sequence of images recorded with a camera-laser system. Sophisticated digital processing algorithms are required to provide a high enough accuracy for quantitative DPIV results. This study explores the potential of a variety of cross-correlation filters to improve the accuracy and robustness of the DPIV estimation. These techniques incorporate the use of the Phase Transform (PHAT) Generalized Cross Correlation (GCC) filter applied to the image cross-correlation. The use of spatial windowing is subsequently examined and shown to be ideally suited for the use of phase correlation estimators, due to their invariance to the loss of correlation effects. The Robust Phase Correlation (RPC) estimator is introduced, with the coupled use of the phase correlation and spatial windowing. The RPC estimator additionally incorporates the use of a spectral filter designed from an analytical decomposition of the DPIV Signal-to-Noise Ratio (SNR). This estimator is validated in a variety of artificial image simulations, the JPIV standard image project, and experimental images, which indicate reductions in error on the order of 50% when correlating low SNR images. Two variations of the RPC estimator are also introduced, the Gaussian Transformed Phase Correlation (GTPC): designed to optimize the subpixel interpolation, and the Spectral Phase Correlation (SPC): estimates the image shift directly from the phase content of the correlation. While these estimators are designed for DPIV, the methodology described here provides a universal framework for digital signal correlation analysis, which could be extended to a variety of other systems. / Master of Science
28

Semantic content analysis for effective video segmentation, summarisation and retrieval

Ren, Jinchang January 2009 (has links)
This thesis focuses on four main research themes namely shot boundary detection, fast frame alignment, activity-driven video summarisation, and highlights based video annotation and retrieval. A number of novel algorithms have been proposed to address these issues, which can be highlighted as follows. Firstly, accurate and robust shot boundary detection is achieved through modelling of cuts into sub-categories and appearance based modelling of several gradual transitions, along with some novel features extracted from compressed video. Secondly, fast and robust frame alignment is achieved via the proposed subspace phase correlation (SPC) and an improved sub-pixel strategy. The SPC is proved to be insensitive to zero-mean-noise, and its gradient-based extension is even robust to non-zero-mean noise and can be used to deal with non-overlapped regions for robust image registration. Thirdly, hierarchical modelling of rush videos using formal language techniques is proposed, which can guide the modelling and removal of several kinds of junk frames as well as adaptive clustering of retakes. With an extracted activity level measurement, shot and sub-shot are detected for content-adaptive video summarisation. Fourthly, highlights based video annotation and retrieval is achieved, in which statistical modelling of skin pixel colours, knowledge-based shot detection, and improved determination of camera motion patterns are employed. Within these proposed techniques, one important principle is to integrate various kinds of feature evidence and to incorporate prior knowledge in modelling the given problems. High-level hierarchical representation is extracted from the original linear structure for effective management and content-based retrieval of video data. As most of the work is implemented in the compressed domain, one additional benefit is the achieved high efficiency, which will be useful for many online applications.
29

Méthodes fréquentielles pour la reconnaissance d'images couleur : une approche par les algèbres de Clifford / Frequency methods for color image recognition : An approach based on Clifford algebras

Mennesson, José 18 November 2011 (has links)
Dans cette thèse, nous nous intéressons à la reconnaissance d’images couleur à l’aide d’une nouvelle approche géométrique du domaine fréquentiel. La plupart des méthodes existantes ne traitent que les images en niveaux de gris au travers de descripteurs issus de la transformée de Fourier usuelle. L’extension de telles méthodes aux images multicanaux, comme par exemple les images couleur, consiste généralement à reproduire un traitement identique sur chacun des canaux. Afin d’éviter ce traitement marginal, nous étudions et mettons en perspective les différentes généralisations de la transformée de Fourier pour les images couleur. Ce travail nous oriente vers la transformée de Fourier Clifford pour les images couleur définie dans le cadre des algèbres géométriques. Une étude approfondie de celle-ci nous conduit à définir un algorithme de calcul rapide et à proposer une méthode de corrélation de phase pour les images couleur. Dans un deuxième temps, nous cherchons à généraliser à travers cette transformée de Fourier les définitions des descripteurs de Fourier de la littérature. Nous étudions ainsi les propriétés, notamment l’invariance à la translation, rotation et échelle, des descripteurs existants. Ce travail nous mène à proposer trois nouveaux descripteurs appelés “descripteurs de Fourier couleur généralisés”(GCFD) invariants en translation et en rotation.Les méthodes proposées sont évaluées sur des bases d’images usuelles afin d’estimer l’apport du contenu fréquentiel couleur par rapport aux méthodes niveaux de gris et marginales. Les résultats obtenus à l’aide d’un classifieur SVM montrent le potentiel des méthodes proposées ; les descripteurs GCFD se révèlent être plus compacts, de complexité algorithmique moindre pour des performances de classification au minimum équivalentes. Nous proposons également des heuristiques pour le choix du paramètre de la transformée de Fourier Clifford.Cette thèse constitue un premier pas vers une généralisation des méthodes fréquentielles aux images multicanaux. / In this thesis, we focus on color image recognition using a new geometric approach in the frequency domain. Most existing methods only process grayscale images through descriptors defined from the usual Fourier transform. The extension of these methods to multichannel images such as color images usually consists in reproducing the same processing for each channel. To avoid this marginal processing,we study and compare the different generalizations of color Fourier transforms. This work leads us to use the Clifford Fourier transform for color images defined in the framework of geometric algebra. A detailed study of it leads us to define a fast algorithm and to propose a phase correlation for colorimages. In a second step, with the aim of generalizing Fourier descriptors of the literature with thisFourier transform, we study their properties, including invariance to translation, rotation and scale.This work leads us to propose three new descriptors called “generalized color Fourier descriptors”(GCFD) invariant in translation and in rotation.The proposed methods are evaluated on usual image databases to estimate the contribution of color frequency content compared with grayscale and marginal methods. The results obtained usingan SVM classifier show the potential of the proposed methods ; the GCFD are more compact, have less computational complexity and give better recognition rates. We also propose heuristics for choosing the parameter of the color Clifford Fourier transform.This thesis is a first step towards a generalization of frequency methods to multichannel images.
30

"Phase-Correlation Based Displacemnt-Metrology" - Few Investigations

Diwan, C Yogesh 07 1900 (has links) (PDF)
No description available.

Page generated in 0.1004 seconds