• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of solvents during material treatment applications : tuning hydrophilicity of silicone rubber and drug loading in mesoporous silica

Hillerström, Anna January 2009 (has links)
Choosing the right solvent is critical for many industrial applications. A useful property for selection of solvents is their solubility parameters. This concept of solubility parameters is central to this thesis and has been used in two different case studies of material treatment applications. Silicone rubber (crosslinked poly(dimethyl siloxane), PDMS) has many favorable material properties making it useful in biomedical devices. However, a limiting aspect of its material properties is a hydrophobic surface. The aim of this work was to prepare a hydrophilic PDMS material while retaining the transparency of the material. To do this, PDMS was combined with a hydrophilic polymer, polyvinylpyrrolidone (PVP) in an interpenetrating polymer network (IPN). A two-step IPN synthesis method was developed and it was found that the solvent used for polymerization of PVP had a significant influence on the water-wettability and the transparency of the PVP/PDMS IPN. Several different analytical techniques were used for determining the degree of phase separation in the PVP/PDMS IPN. It was found, by using microscopy techniques, that the PVP phase domains varied between 200 nm up to a few micrometers, and the size of the phase domains was correlated to the solvent used for polymerization of the IPN. The second topic for which solvent effects were explored was for the use of mesoporous silica particles as potential drug delivery devices. In the present work a drug molecule, ibuprofen, was loaded into mesoporous silica particles using different solvents, and in addition adsorption isotherms were established in each solvent. The maximum loading of ibuprofen in the mesoporous material was achieved when using a nonpolar solvent, in particular liquid carbon dioxide was successfully used. One of the advantages of using liquid carbon dioxide is that no solvent residues are left in the final material, which is important for pharmaceutical applications. Furthermore, it was concluded that ibuprofen was stored in an X-ray amorphous form in the mesoporous particles. Release studies in water showed a rapid release of ibuprofen from the mesoporous silica particles, while the dissolution of samples with crystalline ibuprofen was slower. This was verified to be an effect of a larger exposed ibuprofen area in the ibuprofen-loaded mesoporous silica particles, and it was concluded that the intrinsic dissolution rate for the samples were identical.

Page generated in 0.0715 seconds