• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 33
  • 33
  • 21
  • 12
  • 12
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

THE INTERFEROMETRIC MEASUREMENT OF PHASE MISMATCH IN POTENTIAL SECOND HARMONIC GENERATORS.

SINOFSKY, EDWARD LAWRENCE. January 1984 (has links)
This dissertation combines aspects of lasers, nonlinear optics and interferometry to measure the linear optical properties involved in phase matched second harmonic generation, (SHG). A new measuring technique has been developed to rapidly analyze the phase matching performance of potential SHGs. The data taken is in the form of interferograms produced by the self referencing nonlinear Fizeau interferometer (NLF), and correctly predicts when phase matched SHG will occur in the sample wedge. Data extracted from the interferograms produced by the NLF, allows us to predict both phase matching temperatures for noncritically phase matchable crystals and crystal orientation for angle tuned crystals. Phase matching measurements can be made for both Type I and Type II configurations. Phase mismatch measurements were made at the fundamental wavelength of 1.32 (mu)m, for: calcite, lithium niobate, and gadolinium molybdate (GMO). Similar measurements were made at 1.06 (mu)m. for calcite. Phase matched SHG was demonstrated in calcite, lithium niobate and KTP, while phase matching by temperature tuning is ruled out for GMO.
12

Functional Metamaterials for Nonlinear and Active Applications Using Embedded Devices

Katko, Alexander Remley January 2014 (has links)
<p>Metamaterials have gained extensive attention in recent years due to their ability to exhibit material properties otherwise difficult or impossible to obtain using natural materials. Nonlinear and active metamaterials in particular exhibit great promise for exploring new effects and applications, from tunability to mixing. However, nonlinear and active metamaterials have been explored significantly less than linear metamaterials to this point and much work has focused on the fundamental physics of nonlinear metamaterials. Our aim is to further extend the knowledge of practical nonlinear metamaterials and to demonstrate how they can be transformed to real-world applications through the use of embedded devices. In this dissertation, we demonstrate a variety of ways that devices can be embedded within metamaterial unit cells to provide nonlinear and active effects. </p><p>Chapter 1 introduces the basic theory of metamaterials, background of existing work, and the current limitations of nonlinear and active metamaterial design. In Chapter 2, we present the design, simulation, fabrication, and verification of an RF limiter metamaterial. We show how a metamaterial can be designed using RF engineering principles to act as an effective limiter in a new topology, relying on nonlinear devices embedded within a metamaterial. Chapter 3 shows our design and demonstration of a power harvesting metamaterial. We design a nonlinear metamaterial towards a potential application, discussing how the selection of an appropriate embedded device provides our desired functionality. In Chapter 4 we show how nonlinear and active metamaterials can be used to realize phase conjugation, including demonstration of negative refraction and imaging through the use of these metamaterials. We also discuss design approaches to moving these metamaterials towards real-world applications. Chapter 5 discusses our work concerning metamaterials based on transistors. First we show that appropriate design of a transistor circuit allows us to tune the quality factor and resonant frequency of a metamaterial. We use this metamaterial for time-varying mixing, as well, demonstrating a mixing metamaterial that remains linear. We then illustrate how using transistors as nonlinear devices provides much greater design freedom for use with metamaterials. We show that the nonlinearity of a metamaterial can be dramatically enhanced through the use of transistors and even dynamically tuned, applying these nonlinear metamaterials to applications including phase conjugation and acoustoelectromagnetic modulation. In Chapter 6 we summarize the achievements of the presented research and directions for future work that build on the work described in this thesis.</p> / Dissertation
13

Studies in phase and inversion problems for dynamical electron diffraction /

Faulkner, Helen Mary Louise. January 2003 (has links)
Thesis (Ph.D.)--University of Melbourne, School of Physics, 2003. / Typescript (photocopy). Includes bibliographical references (leaves 121-132).
14

Spatiotemporal behavior and nonlinear dynamics in a phase conjugate resonator

Liu, Siuying Raymond 24 October 2005 (has links)
The work described in this dissertation can be divided into two parts. The first part is an investigation of the transient behavior and stability property of a phase conjugate resonator (PCR) below threshold. The second part is an experimental and theoretical study of the PCR's spatiotemporal dynamics above threshold. The time-dependent coupled wave equations for four-wave mixing (FWM) in a photorefractive crystal, with two distinct interaction regions caused by feedback from an ordinary mirror, was used to model the transient dynamics of a PCR below threshold. Analytical expressions of the steady state cavity's fields for the case of nondepleted pumps and an absorption free medium were derived and used to determine the self-oscillation conditions. The solutions, through simple frequency domain transformation techniques, were used to define the PCR's transfer function and analyse its stability. Taking into account pump depletion and medium absorption, the transient buildup and decay times of the cavity's fields as well as the specularly reflected and phase conjugate reflected intensities were numerically calculated as functions of a number of system parameters such as the coupling parameter and the pump and probe ratios. General trends were unveiled and discussed in view of the possible use of the PCR in image storage or processing architectures. Experimental results for the buildup and decay times confirmed qualitatively the predicted behavior. / Ph. D.
15

Iterative image processing using a cavity with a phase-conjugate mirror: possibilities and limitations

Lo, Kanwai Peter 12 October 2005 (has links)
An optical image feedback system utilizing a cavity with a phase-conjugate mirror (PCM) has been studied. A new theory, based on operators, is developed to describe the steady-state output of the cavity. The use of operators allows one to describe the various optical operations and transformations needed in the optical implementation of iterative algorithms. The characteristics of the cavity are discussed using an expansion of the cavity fields in the cavity eigenfunctions. Several image processing applications using a PCM cavity are proposed and are studied using computer simulations. These theoretical studies indicate that a PC11 cavity can be useful in many applications. Optical phase conjugation was realized using a single crystal of photorefractive BaTi0₃ in a degenerated four-wave mixing geometry. The reflectivity gain from the PCM was optimized experimentally by the geometrical parameters and by the beamintensity ratios. The ability of the PCM to remove phase distortion as predicted theoretically, was demonstrated experimentally. The output of a PCM cavity can be substantially influenced by self-oscillations of the cavity above threshold. This was experimentally studied by observing the time evolution of the input. To avoid the influence of self-oscillation, the cavity must be operated below threshold. It is found that the cavity decay time constant diverges at and about threshold. This can be used as an indicator to show whether the cavity has crossed the threshold or to measure how close to threshold the cavity operates. To verify that a PCM cavity can be used in iterative image processing, an experiment was set up to implement an image restoration scheme based on the Gerchberg algorithm. It is shown that an optical implementation of the Gerchberg algorithm is feasible for objects made of few pixels. The experiment confirmed .that image iteration in a PCm cavity is possible. The limitations of the cavity and the technical difficulties are discussed. / Ph. D.
16

Spatiotemporal dynamics of a photorefractive phase-conjugate resonator

Korwan, Daniel R. 06 June 2008 (has links)
The spatiotemporal dynamics of a photorefractive phase-conjugate resonator (PPCR) is studied both experimentally and analytically. The resonator is a confocal cavity bounded by a dielectric mirror and a phase-conjugate mirror in a four wave mixing geometry. The effect of the Bragg mismatch, which is caused by the misalignment of the pump fields, is experimentally shown to break the cylindrical symmetry of the system and to increase the speed of the dynamics. By studying the first non stationary state at a cavity Fresnel number of F=2.0, the effect of the transverse component of the mismatch is shown to add a transverse phase to the wavefront of the phase-conjugate field, leading to the periodic nucleation of a pair of phase defects. A model of this state is developed in terms of the competition of a few transverse patterns. The model is experimentally verified using a holographic optical correlator designed to identify the modes presumed by the model. The dynamics are also studied using a Karhunen-Loeve decomposition in which the eigenvectors of the covariance matrix are calculated. The covariance matrix is obtained from the transverse intensity fluctuations of the cavity field and the eigenvectors are interpreted as the active cavity modes of the resonator. The results of the application of this experimental method to the F=2.0 state match those obtained by the correlator. This demonstrates its validity as a useful tool for studying the system. Application of the decomposition to states at higher F reveal that aperiodic and periodic states can have very similar active mode structures. An analytical model of the PPCR is then developed using a plane wave decomposition of the cavity field and the n1aterial variables contained in Kukhtarev's equations. Numerical simulations using the model demonstrate its accuracy. In addition, the different effects of the longitudinal and transverse components of the Bragg mismatch on the dynamics and defect nucleation are revealed. The relevant assumptions involved in the development of the model are discussed in detail. / Ph. D.
17

Photorefractive Crystals : Optical Phase Conjugation And Phase Conjugate Interferometry

Jayanth, P 10 1900 (has links) (PDF)
No description available.
18

Conjugação de fase e modulação transversal de fase em cristais dopados com Cr+3 / Phase conjugation and transverse self-phase modulation in Cr+3 doped crystals

Catunda, Tomaz 18 August 1989 (has links)
Neste trabalho estudamos teórica e experimentalmente o efeito de Conjugação de Fase por Mistura Degenerada de Quatro Ondas (CFMD40) e Modulação Transversal de Fase em cristais dopados com Cr+3. Estudamos a CFMD40 em Al2O3:Cr+3 (rubi) e GdAlO3:Cr+3 com um laser de Ar (em &#955;=514nm) obtendo um bom acordo entre os resultados experimentais e os teóricos (nestes cálculos usamos os valores de n2 de um trabalho anterior [1]). O modelo teórico que fizemos explica muito bem o comportamento de saturação da eficiência da CFMD40 que não era compreendido em trabalhos anteriores [47,48.2]. Usando os mesmos valores de n2 obtivemos um bom acordo entre os resultados experimentais e teóricos para o efeito de Modulação Transversal de Fase. Também fizemos um modelo teórico para o efeito de Modulação Transversal de Fase em CFMD40 que explica nossas observações [2]. A não linearidade destes materiais foi investigada usando-se três técnicas experimentais diferentes [1.2] e por dois outros grupos [61.62] (para o rubi) através de mistura de duas ondas não degeneradas. Todas estas medidas estão em bom acordo. Na alexandrita (BeAl2O 4:Cr+3) estudamos o espectro de &#967;(3) (ou n2) em ressonância das linhas R. Nos atribuímos a forma assimétrica do espectro como sendo oriunda de duas contribuições para susceptibilidade, onde um termo é devido a interação ressonante com o sistema de dois níveis e o outro devido a mudança de polarizabilidade causada pela população do estado excitado (esta é a primeira vez que este efeito foi observado). / In this work we studied theoretical and experimentally the effects of Phase Conjugation by Degenerate Four Wave Mixing and Transversal Phase (PCD4WM) Modulation in Cr+3 doped crystals. We studied the PDC4WM in Al2O3:Cr+3 (ruby) and GdAlO3:Cr+3 with on Ar laser (at &#955;= 514 nm) and obtained a good agreement between our experimental and theoretical results (in these ca1culations we used the nonlinear refractive index n 2 values from a previous paper [1]. The theoretical model that we developed explains very well the saturation behaviour of the PDC4WM efficiency that was not understood in previous papers [47.48,2]. These values of n2 are also in good agreement with our results in Transverse Phase Modulation. We also developed a theoretical model for the effect of Transverse Phase Modulation in PCDFWM that explains our observations [2]. The nonlinearity ?n IND.2? from these materials was investigated by us using three different techniques [1.2], by other two groups [61.62] (for the ruby) in nondegenerate two-wave mixing and all those measurements are in good agreement. In alexandrite (BeAl2O4:Cr +3) we studied the &#967;(3) (or n2) spectrum in resonance with the R lines. We attributed the asymetric shape of the spectrum by the effect of two differents contributions, one term due to the resonant interaction of the two-level system and the other due to the polarizability change caused by excited state population (this is the first observation of this kind of effect.
19

Conjugação de fase e modulação transversal de fase em cristais dopados com Cr+3 / Phase conjugation and transverse self-phase modulation in Cr+3 doped crystals

Tomaz Catunda 18 August 1989 (has links)
Neste trabalho estudamos teórica e experimentalmente o efeito de Conjugação de Fase por Mistura Degenerada de Quatro Ondas (CFMD40) e Modulação Transversal de Fase em cristais dopados com Cr+3. Estudamos a CFMD40 em Al2O3:Cr+3 (rubi) e GdAlO3:Cr+3 com um laser de Ar (em &#955;=514nm) obtendo um bom acordo entre os resultados experimentais e os teóricos (nestes cálculos usamos os valores de n2 de um trabalho anterior [1]). O modelo teórico que fizemos explica muito bem o comportamento de saturação da eficiência da CFMD40 que não era compreendido em trabalhos anteriores [47,48.2]. Usando os mesmos valores de n2 obtivemos um bom acordo entre os resultados experimentais e teóricos para o efeito de Modulação Transversal de Fase. Também fizemos um modelo teórico para o efeito de Modulação Transversal de Fase em CFMD40 que explica nossas observações [2]. A não linearidade destes materiais foi investigada usando-se três técnicas experimentais diferentes [1.2] e por dois outros grupos [61.62] (para o rubi) através de mistura de duas ondas não degeneradas. Todas estas medidas estão em bom acordo. Na alexandrita (BeAl2O 4:Cr+3) estudamos o espectro de &#967;(3) (ou n2) em ressonância das linhas R. Nos atribuímos a forma assimétrica do espectro como sendo oriunda de duas contribuições para susceptibilidade, onde um termo é devido a interação ressonante com o sistema de dois níveis e o outro devido a mudança de polarizabilidade causada pela população do estado excitado (esta é a primeira vez que este efeito foi observado). / In this work we studied theoretical and experimentally the effects of Phase Conjugation by Degenerate Four Wave Mixing and Transversal Phase (PCD4WM) Modulation in Cr+3 doped crystals. We studied the PDC4WM in Al2O3:Cr+3 (ruby) and GdAlO3:Cr+3 with on Ar laser (at &#955;= 514 nm) and obtained a good agreement between our experimental and theoretical results (in these ca1culations we used the nonlinear refractive index n 2 values from a previous paper [1]. The theoretical model that we developed explains very well the saturation behaviour of the PDC4WM efficiency that was not understood in previous papers [47.48,2]. These values of n2 are also in good agreement with our results in Transverse Phase Modulation. We also developed a theoretical model for the effect of Transverse Phase Modulation in PCDFWM that explains our observations [2]. The nonlinearity ?n IND.2? from these materials was investigated by us using three different techniques [1.2], by other two groups [61.62] (for the ruby) in nondegenerate two-wave mixing and all those measurements are in good agreement. In alexandrite (BeAl2O4:Cr +3) we studied the &#967;(3) (or n2) spectrum in resonance with the R lines. We attributed the asymetric shape of the spectrum by the effect of two differents contributions, one term due to the resonant interaction of the two-level system and the other due to the polarizability change caused by excited state population (this is the first observation of this kind of effect.
20

Photophysics and nonlinear optics based on dye-doped sol-gel silica. / CUHK electronic theses & dissertations collection

January 1998 (has links)
Lam Sio Kuan. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (p. 111-116). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.

Page generated in 0.1011 seconds