Spelling suggestions: "subject:"phasenmodell"" "subject:"phasenfeldmodellierung""
1 |
Investigations of microstructural changes in lead-free solder alloys by means of phase field theoriesBöhme, Thomas January 2008 (has links)
Zugl.: Berlin, Techn. Univ., Diss., 2008
|
2 |
Phase-field Modeling of Fracture in Heterogeneous MaterialsHansen-Dörr, Arne Claus 06 April 2022 (has links)
The prediction of fracture is of utmost importance regarding the design of modern, specifically tailored engineering materials. These materials are often heterogeneous, \ie their properties vary in space. This can either be achieved purposefully by combining two or more constituents to profit from a more resilient composite material, or happen due to unavoidable imperfections. In any case, purely experimental assessment of failure is tedious and circuitous as soon as the structure of interest gets more complex, and the involvement of numerical models is inevitable.
In this work, the phase-field approach to fracture is applied which is able to capture manifold crack phenomena inherently and sidesteps the need for remeshing by describing the crack as a continuous field. The phase-field model is extended to a fully diffuse incorporation of heterogeneities: A static order parameter smoothly transitions from one to the other bulk material constituent, while the weak, brittle interface is incorporated via a continuous fracture toughness distribution. The sharp interface jump conditions still hold for the diffuse representation since a partial rank-1 relaxation is employed in accordance with the unilateral contact condition of the phase-field model. Moreover, a compensation procedure ensures the independence of the interface fracture toughness from interface and phase-field length scales. The model is validated by a comparison to analytical results and the predictive power is demonstrated by the deduction of direction-dependent, effective fracture properties of heterogeneous microstructures. / Die Vorhersage des Bruchverhaltens ist für die Entwicklung moderner, speziell zugeschnittener technischer Werkstoffe von größter Bedeutung. Diese Materialien sind oft heterogen, d.h. ihre Eigenschaften variieren im Raum. Dies kann entweder absichtlich durch die Kombination zweier oder mehrerer Bestandteile erreicht werden, um von einem widerstandsfähigeren Verbundwerkstoff zu profitieren, oder durch unvermeidbare Imperfektionen geschehen. In jedem Fall ist eine rein experimentelle Versagensbewertung komplexer Strukturen mühsam und umständlich, und die Nutzung numerischer Modelle unvermeidlich.
In dieser Arbeit werden Brüche mittels Phasenfeldmethode modelliert, wodurch vielfältige Rissphänomene erfasst werden können und die Notwendigkeit einer Neuvernetzung durch die Beschreibung des Risses als kontinuierliches Feld entfällt. Das Phasenfeldmodell wird um eine vollständig diffuse Einbindung von Heterogenitäten erweitert: Ein statischer Orderparameter beschreibt den glatten Übergang zwischen zwei Bestandteilen des Materials, während die geschwächte, spröde Grenzfläche durch eine kontinuierliche Bruchzähigkeitsverteilung eingebunden wird. Die scharfen Grenzflächensprungbedingungen gelten auch für die diffuse Darstellung, da eine partielle Rang-1 Relaxation in Übereinstimmung mit der unilateralen Rissflächenkontaktbedingung genutzt wird. Darüber hinaus gewährleistet ein Kompensationsverfahren die Unabhängigkeit der Grenzflächenbruchzähigkeit von inhärenten Längenskalen der Grenzfläche und des Rissphasenfelds. Das Modell wird durch einen Vergleich mit analytischen Ergebnissen validiert und die Vorhersagekraft wird durch die Ableitung richtungsabhängiger, effektiver Brucheigenschaften heterogener Mikrostrukturen demonstriert.
|
3 |
Phase-field modeling of brittle fracture along the thickness direction of plates and shellsAmbati, Marreddy, Heinzmann, Jonas, Seiler, Martha, Kästner, Markus 22 January 2024 (has links)
The prediction of fracture in thin-walled structures is decisive for a wide range of applications. Modeling methods such as the phase-field method usually consider cracks to be constant over the thickness which, especially in load cases involving bending, is an imperfect approximation. In this contribution, fracture phenomena along the thickness direction of structural elements (plates or shells) are addressed with a phase-field modeling approach. For this purpose, a new, so called “mixed-dimensional” model is introduced, which combines structural elements representing the displacement field in the two-dimensional shell midsurface with continuum elements describing a crack phase-field in the three-dimensional solid space. The proposed model uses two separate finite element discretizations, where the transfer of variables between the coupled twoand three-dimensional fields is performed at the integration points which in turn need to have corresponding geometric locations. The governing equations of the proposed mixed-dimensional model are deduced in a consistent manner from a total energy functional with them also being compared to existing standard models. The resulting model has the advantage of a reduced computational effort due to the structural elements while still being able to accurately model arbitrary through-thickness crack evolutions as well as partly along the thickness broken shells due to the continuum elements. Amongst others, the higher accuracy aswell as the numerical efficiency of the proposed model are tested and validated by comparing simulation results of the new model to those obtained by standard models using numerous representative examples.
|
Page generated in 0.0677 seconds