• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification and analysis of new phloem proteins from <i>Brassicaceae</i> and <i>Cucurbitaceae</i>

Kolasa, Anna January 2005 (has links)
The major aim of this work was the identification of new phloem sap proteins and a metabolic characterisation of this transport fluid. The experiments were performed on the three plant species <i>C. sativus</i>, <i>C. maxima</i> and <i>B. napus</i>. To characterise the phloem samples from <i>B. napus</i>, a new model plant for phloem analysis, western blot tests together with metabolite profiling were performed. GC-MS metabolite profiling and enzyme assays were used for measuring metabolites in the phloem of B. napus. Results from the phloem sap measurements showed, as expected, a typical sugar distribution for apoplasmic phloem loaders with sucrose being the predominant sugar. In stem extracts, the most abundant sugar was glucose with much lower fructose and sucrose levels. With the GC-MS approach it was possible to identify a number of metabolites which showed a differential distribution when phloem and stem tissue extracts were compared. For protein identification, two different approaches were employed (i) screening expression libraries with total phloem protein specific antisera and (ii) protein separation on 2 DE gels followed by ESI-MS/MS sequence analyses. For the first approach, three different phloem protein-specific antisera were produced and expression libraries were constructed. Phloem protein antisera were tested for specificity and some attempts to estimate specific epitopes were undertaken. Screening of the libraries resulted in the identification of 14 different proteins from all investigated species. Analyses of <i>B. napus</i> phloem sap proteins from 2 DE with ESI-MS/MS resulted in the identification of 5 different proteins. The phloem localisation of the identified proteins was additionally confirmed by western blot tests using specific antibodies. In order to functionally characterise some selected phloem proteins from <i>B. napus</i>, the group of potential calcium-binding polypeptides was analysed for functional Ca<sup>+2</sup> binding properties and several Ca<sup>+2</sup>–binding proteins could be isolated. However, their sequences could as yet not be determined. Another approach used for functional protein characterisation was the analysis of <i>Arabidopsis</i> T-DNA insertion mutants. Four available mutants with insertions in phloem protein-specific genes were chosen from the SALK and GABI-Kat collections and selected homozygous lines were tested for the presence of the investigated proteins. In order to verify if the product of one of the mutated gene (GRP 7) is transported through the phloem, grafting experiments were performed followed by western blot analyses. Although the employed antiserum against GRP 7 protein did not allow distinguishing between the mutant and the wild type plants, successful <i>Arabidopsis</i> grafting could be established as a promising method for further studies on protein translocation through the phloem. / Das Hauptziel der vorliegenden Arbeit war die Identifizierung neuer Phloemsaftproteine sowie die metabolische Charakterisierung dieser Transportflüssigkeit. Die beschriebenen Experimente wurden an den vier Pflanzenarten <i>Cucumis sativus</i>, <i>Curcurbita maxima</i>, <i>Brassica napus</i> und <i>Arabidopsis thaliana</i> durchgeführt. Für die Analyse von Phloemsaftproteinen aus <i>B. napus</i> war zunächst wichtig, die Herkunft und Reinheit der gewonnenen Phloemproben mittels Western Blot Analysen, Bestimmungen der Zuckerkonzentration und einer metabolischen Charakterisierung mittels GC-MS zu überprüfen. Die Ergebnisse dieser Untersuchungen zeigten erwartungsgemäß die typische Zuckerzusammensetzung für apoplastische Phloembelader, mit Saccharose als vorherrschendem Zucker. In Stängelextrakten war dagegen Glukose der vorherrschende Zucker, wogegen Fruktose und Saccharose in wesentlich geringeren Mengen nachweisbar waren. Mit diesem GS-MS Ansatz war es möglich eine Vielzahl von Metaboliten zu identifizieren, die eine differentielle Verteilung in Phloemsaft und Stängelextrakt aufweisen. Ein Versuchsansatz zur Proteinanalyse war es Gene, welche Phloemproteine kodieren, zu klonieren. Zu diesem Zweck wurden Expressionsbibliotheken von <i>C. maxima</i>, <i>C. sativus</i> und <i>B. napus</i> konstruiert und anschließend mittels Phloemprotein-spezifischen Antiseren der entsprechenden Arten durchforstet. Des Weiteren wurden die Antiseren auf ihre Spezifität getestet und es wurden Versuche durchgeführt, um mögliche spezifische Epitope zu identifizieren. Die Durchforstung der Expressionsbibliotheken führte zur Identifizierung von 14 verschiedenen Proteinen aus den drei untersuchten Pflanzenarten. Im Rahmen einer umfassenden Charakterisierung des Phloemproteoms von <i>B. napus</i> mittels zwei-dimensionaler Gelelektorphorese (2 DE) und anschließender Massenspektrometrie (ESI-MS/MS), wurden insgesamt 5 neue Phloemproteine identifiziert. Die Lokalisierung dieser Proteine im Phloem wurde zusätzlich mittels Western Blot Analysen unter Verwendung spezifischer Antikörper verifiziert. Die funktionelle Analyse einiger dieser neu identifizierten Proteine wurde unter Zuhilfenahme von „knock-out“ Mutanten der Modelpflanze <i>Arabidopsis thaliana</i> begonnen. Das vorrangige Ziel dabei war, zu überprüfen, ob die ausgewählten Proteine tatsächlich im Phloem transportiert werden. Dazu wurden so genannte Pfropfungsversuche durchgeführt. Vier <i>Arabidopsis</i> Mutanten, die Insertionen in Phloemprotein-spezifischen Genen aufweisen wurden aus der SALK bzw. aus der GABI-KAT Sammlung ausgewählt und die selektierten, homozygoten Linien auf die Anwesenheit der entsprechenden Proteine hin untersucht. Um letztendlich den Transport eines der mutierten Genprodukte zu verifizieren (GRP 7), wurden Pfropfungsversuche mit anschließender Western Blot Analyse durchgeführt. Obwohl das entwickelte Antiserum gegen GRP 7 es nicht erlaubte zwischen mutierten und Wildtyp Pflanzen zu unterscheiden, konnte doch die Pfropfung von <i>Arabidopsis</i> Pflanzen erfolgreich etabliert werden. Somit steht nun eine Erfolg versprechende Methode zur Verfügung, um den Proteintransport durch das Phloem zu untersuchen. Eine weitere Gruppe von Phloemproteinen aus <i>B. napus</i>, solche mit einer potentiellen Calcium-bindenden Domäne, wurden ebenfalls funktionell auf mögliche Ca<sup>2+</sup>-bindende Eigenschaften hin untersucht, dabei konnten einige Ca<sup>2+</sup>–bindende Proteine isoliert werden, deren Sequenz bislang jedoch noch unbekannt ist.
2

Dissection of phloem transport in cucurbitaceae by metabolomic analysis

Zhang, Baichen January 2005 (has links)
This thesis aimed to investigate several fundamental and perplexing questions relating to the phloem loading and transport mechanisms of <i>Cucurbita maxima</i>, by combining metabolomic analysis with cell biological techniques. This putative symplastic loading species has long been used for experiments on phloem anatomy, phloem biochemistry, phloem transport physiology and phloem signalling. Symplastic loading species have been proposed to use a polymer trapping mechanism to accumulate RFO (raffinose family oligosaccharides) sugars to build up high osmotic pressure in minor veins which sustains a concentration gradient that drives mass flow. However, extensive evidence indicating a low sugar concentration in their phloem exudates is a long-known problem that conflicts with this hypothesis. Previous metabolomic analysis shows the concentration of many small molecules in phloem exudates is higher than that of leaf tissues, which indicates an active apoplastic loading step. Therefore, in the view of the phloem metabolome, a symplastic loading mechanism cannot explain how small molecules other than RFO sugars are loaded into phloem. <br><br> Most studies of phloem physiology using cucurbits have neglected the possible functions of vascular architecture in phloem transport. It is well known that there are two phloem systems in cucurbits with distinctly different anatomical features: central phloem and extrafascicular phloem. However, mistaken conclusions on sources of cucurbit phloem exudation from previous reports have hindered consideration of the idea that there may be important differences between these two phloem systems. <br><br> The major results are summarized as below:<br> 1) O-linked glycans in <i>C.maxima</i> were structurally identified as beta-1,3 linked glucose polymers, and the composition of glycans in cucurbits was found to be species-specific. Inter-species grafting experiments proved that these glycans are phloem mobile and transported uni-directionally from scion to stock.<br> 2) As indicated by stable isotopic labelling experiments, a considerable amount of carbon is incorporated into small metabolites in phloem exudates. However, the incorporation of carbon into RFO sugars is much faster than for other metabolites.<br> 3) Both CO2 labelling experiments and comparative metabolomic analysis of phloem exudates and leaf tissues indicated that metabolic processes other than RFO sugar metabolism play an important role in cucurbit phloem physiology.<br> 4) The underlying assumption that the central phloem of cucurbits continuously releases exudates after physical incision was proved wrong by rigorous experiments including direct observation by normal microscopy and combined multiple-microscopic methods. Errors in previous experimental confirmation of phloem exudation in cucurbits are critically discussed.<br> 5) Extrafascicular phloem was proved to be functional, as indicated by phloem-mobile carboxyfluorescein tracer studies. Commissural sieve tubes interconnect phloem bundles into a complete super-symplastic network.<br> 6) Extrafascicular phloem represents the main source of exudates following physical incision. The major transported metabolites by these extrafacicular phloem are non-sugar compounds including amino acids, O-glycans, amines.<br> 7) Central phloem contains almost exclusively RFO sugars, the estimated amount of which is up to 1 to 2 molar. The major RFO sugar present in central phloem is stachyose. <br> 8) Cucurbits utilize two structurally different phloem systems for transporting different group of metabolites (RFO sugars and non-RFO sugar compounds). This implies that cucurbits may use spatially separated loading mechanisms (apoplastic loading for extrafascicular phloem and symplastic loading for central phloem) for supply of nutrients to sinks. <br> 9) Along the transport systems, RFO sugars were mainly distributed within central phloem tissues. There were only small amounts of RFO sugars present in xylem tissues (millimolar range) and trace amounts of RFO sugars in cortex and pith. The composition of small molecules in external central phloem is very different from that in internal central phloem.<br> 10) Aggregated P-proteins were manually dissected from central phloem and analysed by both SDS-PAGE and mass spectrometry. Partial sequences of peptides were obtained by QTOF <i>de novo</i> sequencing from trypsin digests of three SDS-PAGE bands. None of these partial sequences shows significant homology to known cucurbit phloem proteins or other plant proteins. This proves that these central phloem proteins are a completely new group of proteins different from those in extrafascicular phloem. The extensively analysed P-proteins reported in literature to date are therefore now shown to arise from extrafascicular phloem and not central phloem, and therefore do not appear to be involved in the occlusion processes in central phloem. / Phloem transportiert ein ausgedehntes Spektrum an Molekülen zwischen Pflanzenorganen, um Wachstum und Entwicklung zu koordinieren. Folglich ist eine umfassende und unvoreingenommene Metabolom-Analyse notwendig, um unser Verständnis über den Transport von Stoffwechselprodukten sowie über Phloemtransport zu vertiefen. Phloemexsudate von Kürbispflanzen werden unter Verwendung der Metabolom-Analyse analysiert. Bei diesen Pflanzen wird angenommen, dass sie symplastische Beladungswege verwenden, um Photoassmilate als Ausgangsschritt des Phloemtransportes zu konzentrieren. Zwei neue Familien Callose-verwandter Substanzen, 1,3-Overknüpfte Glycane, sowie eine Reihe anderer kleinerer Metabolite werden in den Phloemexsudaten detektiert. Metabolom-Daten und physiologische Experimente widersprechen früher berichtetem Verständnis des Phloemexsudationsprozesses in Kürbispflanzen. Folglich bestätigt sich der Phloemexsudationsprozeß durch Kombination unterschiedlicher mikroskopischer Techniken. Kürbispflanzen besitzen zwei Phloemsysteme mit eindeutigen anatomischen Eigenschaften. Es zeigt sich, daß Phloemexsudate in Kürbissen hauptsächlich vom extrafaszikulären Phloem, nicht vom zentralen Phloem, stammen. In den letzten Jahrzehnten wurde gewöhnlich mißverstanden, daß Phloemexsudate vom zentralen Phloem stammen. Die eindeutigen metabolischen Profile der unterschiedlichen Phloemsysteme, die durch Metabolom-Analysen in der räumlichen Auflösung beobachtet werden, bestätigen die unterschiedlichen physiologischen Funktionen der zwei unterschiedlichen Phloemsysteme: das zentrale Phloem transportiert hauptsächlich Zucker, während das extrafaszikuläre Phloem ein ausgedehntes Spektrum von Metaboliten transportiert. Es kann auch ein unterschiedliches metabolisches Profil kleiner Moleküle zwischen internem und externem zentralem Phloem beobachtet werden. Von Strukturproteinen des zentralen Phloems wurden auch Proben genommen und mittels Massenspektrometrie analysiert. Diese Proteine erweisen sich als neuartige Proteine, die sich zu denen im extrafaszikulären Phloem unterscheiden. Dies bestätigt ferner den Funktionsunterschied der unterschiedlichen Phloemsysteme in Kürbispflanzen. Basierend auf diesen neuartigen Entdeckungen des Phloem-Metaboloms und dem vorhergehenden Wissen über den Phloemtransport in Kürbispflanzen, wird ein neues Modell vorgeschlagen, um den Mechanismus des Phloemtransports in der symplastischen Beladung zu verstehen.<br>

Page generated in 0.0721 seconds