Spelling suggestions: "subject:"phosphazenes"" "subject:"phosphaalkenes""
1 |
Chelating phosphine complexes of ruthenium for the co-ordination and activation of small moleculesLedger, Araminta January 2011 (has links)
No description available.
|
2 |
The perception and comprehension of prosthetic vison: patient rehabilitation and image processing considerations from simulated prosthetic vision psychophysicsChen, Spencer Chin-Yu, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2009 (has links)
A successful restoration of vision should allow the blind to look, to see and to understand. The engineering of a microelectronic vision prosthesis has come a long way over the last forty years, but the understanding of how the restored form of vision would be interpreted and functionally applied to everyday living has made little progress until recent times. Prosthetic vision is not what most people think it would be; it is a visual scene composed of relatively large, isolated, spots of light so-called "phosphenes", very much like a magnified pictorial print. This thesis dissertation seeks to obtain a complete survey of the visual description of phosphenes from the human trial reports in the literature, simulate it, obtain a measure of the functional capacity of such visual perception, and explain the measured performance against design aspects of phosphene presentation, human perception, cognition and behaviour. Specifically, "visual acuity" (VA) was assessed on normally sighted subjects (N=15) administered with "simulated prosthetic vision". VA is a functional measure of vision highly correlated to many daily activities. Aggregating the results from the study with the other VA studies in prosthetic vision, it is shown that in general, the density of the phosphene field determines the affordable VA; however, design aspects relating to the phosphene field lattice (0.03 10gMAR with the hexagonal lattice as opposed to a square lattice) and image processing routines (0.15 10gMAR at optimised settings) can be further fine-tuned to improve VA performance. Significant performance improvement also arose from learning (0.13 10gMAR over ten visitations) and visual scanning adaptation (0.20 10gMAR with a circular scanning strategy). Performance improvements are likely related to various preferences and perceptual preferences of the human visual system. A rehabilitation program targeting the appropriate behavioural adaptation coupled with image processing routine optimised for image comprehension should provide a vision prosthesis recipient with the best functional experience to restored vision.
|
3 |
Prosthetic vision : Visual modelling, information theory and neural correlatesHallum, Luke Edward, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Electrical stimulation of the retina affected by photoreceptor loss (e.g., cases of retinitis pigmentosa) elicits the perception of luminous spots (so-called phosphenes) in the visual field. This phenomenon, attributed to the relatively high survival rates of neurons comprising the retina's inner layer, serves as the cornerstone of efforts to provide a microelectronic retinal prosthesis -- a device analogous to the cochlear implant. This thesis concerns phosphenes -- their elicitation and modulation, and, in turn, image analysis for use in a prosthesis. This thesis begins with a comparative review of visual modelling of electrical epiretinal stimulation and analogous acoustic modelling of electrical cochlear stimulation. The latter models involve coloured noise played to normal listeners so as to investigate speech processing and electrode design for use in cochlear implants. Subsequently, four experiments (three psychophysical and one numerical), and two statistical analyses, are presented. Intrinsic signal optical imaging in cerebral cortex is canvassed appendically. The first experiment describes a visual tracking task administered to 20 normal observers afforded simulated prosthetic vision. Fixation, saccade, and smooth pursuit, and the effect of practice, were assessed. Further, an image analysis scheme is demonstrated that, compared to existing approaches, assisted fixation and pursuit (but not saccade) accuracy (35.8% and 6.8%, respectively), and required less phosphene array scanning. Subsequently, (numerical) information-theoretic reasoning is provided for the scheme's superiority. This reasoning was then employed to further optimise the scheme (resulting in a filter comprising overlapping Gaussian kernels), and may be readily extended to arbitrary arrangements of many phosphenes. A face recognition study, wherein stimuli comprised either size- or intensity-modulated phosphenes, is then presented. The study involved unpracticed observers (n=85), and showed no 'size' --versus--'intensity' effect. Overall, a 400-phosphene (100-phosphene) image afforded subjects 89.0% (64.0%) correct recognition (two-interval forced-choice paradigm) when five seconds' scanning was allowed. Performance fell (64.5%) when the 400-phosphene image was stabilised on the retina and presented briefly. Scanning was similar in 400- and 100-phosphene tasks. The final chapter presents the statistical effects of sampling and rendering jitter on the phosphene image. These results may generalise to low-resolution imaging systems involving loosely packed pixels.
|
4 |
Prosthetic vision : Visual modelling, information theory and neural correlatesHallum, Luke Edward, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Electrical stimulation of the retina affected by photoreceptor loss (e.g., cases of retinitis pigmentosa) elicits the perception of luminous spots (so-called phosphenes) in the visual field. This phenomenon, attributed to the relatively high survival rates of neurons comprising the retina's inner layer, serves as the cornerstone of efforts to provide a microelectronic retinal prosthesis -- a device analogous to the cochlear implant. This thesis concerns phosphenes -- their elicitation and modulation, and, in turn, image analysis for use in a prosthesis. This thesis begins with a comparative review of visual modelling of electrical epiretinal stimulation and analogous acoustic modelling of electrical cochlear stimulation. The latter models involve coloured noise played to normal listeners so as to investigate speech processing and electrode design for use in cochlear implants. Subsequently, four experiments (three psychophysical and one numerical), and two statistical analyses, are presented. Intrinsic signal optical imaging in cerebral cortex is canvassed appendically. The first experiment describes a visual tracking task administered to 20 normal observers afforded simulated prosthetic vision. Fixation, saccade, and smooth pursuit, and the effect of practice, were assessed. Further, an image analysis scheme is demonstrated that, compared to existing approaches, assisted fixation and pursuit (but not saccade) accuracy (35.8% and 6.8%, respectively), and required less phosphene array scanning. Subsequently, (numerical) information-theoretic reasoning is provided for the scheme's superiority. This reasoning was then employed to further optimise the scheme (resulting in a filter comprising overlapping Gaussian kernels), and may be readily extended to arbitrary arrangements of many phosphenes. A face recognition study, wherein stimuli comprised either size- or intensity-modulated phosphenes, is then presented. The study involved unpracticed observers (n=85), and showed no 'size' --versus--'intensity' effect. Overall, a 400-phosphene (100-phosphene) image afforded subjects 89.0% (64.0%) correct recognition (two-interval forced-choice paradigm) when five seconds' scanning was allowed. Performance fell (64.5%) when the 400-phosphene image was stabilised on the retina and presented briefly. Scanning was similar in 400- and 100-phosphene tasks. The final chapter presents the statistical effects of sampling and rendering jitter on the phosphene image. These results may generalise to low-resolution imaging systems involving loosely packed pixels.
|
Page generated in 0.0369 seconds