• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Mechanistic Study in Methanol: Cleavage of RNA Models and Highly Stable Phosphodiesters with Dinuclear Zn(II) Complexes

Melnychuk, Stephanie 15 September 2008 (has links)
Phosphoryl transfer reactions are vital to life. In response to the slow intrinsic rates of phosphoryl transfer, Nature has evolved a series of enzymes designed to accelerate these reactions and allow them to occur at biologically relevant rates. These metallo-enzymes are largely characterized by bi- or tri-nuclear active sites with effective dielectric constants that more closely resemble those of organic solvents than water. This project was designed to better understand the mechanisms by which metalloenzymes cleave phosphodiesters with poor leaving groups. The stability of the phosphodiester is central to the storage of genetic information in DNA and RNA. The cleavage of a series of more reactive RNA models, 2-hydroxylpropyl aryl phosphates 1a-g, catalyzed by a dinuclear Zn(II)2 complex of 53 in methanol was explored. A solution of 53:Zn(II)2:(-OCH3) was observed to accelerate the decomposition of 1a-g with rates that were 10^11-10^12-fold greater than the methoxidepromoted reaction at ss pH 9.47, approaching rate accelerations achieved by natural enzymes. The remarkable activity of 53:Zn(II)2:(-OCH3) and 36:Zn(II)2:(-OCH3) towards the cleavage of 1a-g probed the study of the decomposition of diribonucleotides(3'->€™ 5')UpU and (3'->€™ 5'€™)ApC in methanol. The 53:Zn(II)2:(-OCH3)- and 36:Zn(II)2:(-OCH3)-catalyzed decomposition of UpU achieved k2 values of 1.21 ± 0.17 and (7.04 ± 0.99) x 10^-2 M^-1s^-1. The reactivity of ApC in the presence of these systems was unimpressive, however Zn(II) ions in ethanol resulted in the isomerization of 3'->€™ 5'€™)ApC to (2'->™ 5'€™)ApC providing support for the existence of a pentacoordinate phosphorane intermediate. The pentacoordinate phosphorane was further explored through the reaction of 36:Zn(II)2:(-OCH3) with the cyclic phosphate 58 and 2-hydroxylpropyl methyl phosphate (59). In the presence of 36:Zn(II)2:(-OCH3) the rate of isomerization of 59/59a (kobs = (4.7 ± 0.5) x 10^-3 s^-1) exceeded that of expulsion of the methoxy group (kobs = 1.62 x 10^-3 s^-1), thus confirming the existence of a pentacoordinate phosphorane intermediate (60)and providing support for a two-step phosphodiester cleavage reaction. The catalytic efficiency of 36:Zn(II)2:(-OCH3) towards the cleavage of stable phosphodiesters probed its application towards the decomposition of dimethyl phosphate (2) in methanol-d4. The exchange of OCH3 for OCD3 occurred with kcatmax = (2.27 ± 0.03) x 10^-6 s^-1. / Thesis (Master, Chemistry) -- Queen's University, 2008-09-12 13:09:42.427

Page generated in 0.0476 seconds