• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Cardioprotection Induced by Lipopolysaccharide Involves phos-phoinositide 3-kinase/Akt and High Mobility Group Box 1 Pathways

Liu, Xiang, Chen, Yijiang, Wu, Yanhu, Ha, Tuanzhu, Li, Chuanfu 01 July 2010 (has links)
Objective: The mechanisms by which lipopolysaccharide (LPS) pretreatment induces cardioprotection following ischaemia/reperfusion (I/R) have not been fully elucidated. We hypothesized that activation of phosphoinositide 3-kinase (PI3K)/Akt and high mobility group box 1 (HMGBx1) signaling plays an important role in LPS-induced cardioprotection. Methods: In in vivo experiments, age- and weight-matched male C57BL/10Sc wild type mice were pretreated with LPS before ligation of the left anterior descending coronary followed by reperfusion. Infarction size was examined by triphenyltetrazolium chloride (TTC) staining. Akt, phospho-Akt, and HMGBx1 were assessed by immunoblotting with appropriate primary antibodies. In situ cardiac myocyte apoptosis was examined by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. In an in vitro study, rat cardiac myoblasts (H9c2) were subdivided into two groups, and only one was pretreated with LPS. After pretreatment, the cells were transferred into a hypoxic chamber under 0.5% O2. Levels of HMGBx1 were assessed by immunoblot. Results: In the in vivo experiment, pretreatment with LPS reduced the at risk infarct size by 70.6% and the left ventricle infarct size by 64.93% respectively. Pretreatment with LPS also reduced cardiac myocytes apoptosis by 39.1% after ischemia and reperfusion. The mechanisms of LPS induced cardioprotection involved increasing PI3K/Akt activity and decreasing expression of HMGBx1. In the in vitro study, pretreatment with LPS reduced the level of HMGBx1 in H9c2 cell cytoplasm following hypoxia. Conclusion: The results suggest that the cardioprotection following I/R induced by LPS pretreatment involves PI3K/Akt and HMGBx1 pathways.
2

Glucan Phosphate Attenuates Cardiac Dysfunction and Inhibits Cardiac MIF Expression and Apoptosis in Septic Mice

Ha, Tuanzhu, Hua, Fang, Grant, Daniel, Xia, Yeling, Ma, Jing, Gao, Xiang, Kelley, Jim, Williams, David L., Kalbfleisch, John, Browder, I. William, Kao, Race L., Li, Chuanfu 09 October 2006 (has links)
Myocardial dysfunction is a major consequence of septic shock and contributes to the high mortality of sepsis. We have previously reported that glucan phosphate (GP) significantly increased survival in a murine model of cecal ligation and puncture (CLP)-induced sepsis. In the present study, we examined the effect of GP on cardiac dysfunction in CLP-induced septic mice. GP was administered to ICR/HSD mice 1 h before induction of CLP. Sham surgically operated mice served as control. Cardiac function was significantly decreased 6 h after CLP-induced sepsis compared with sham control. In contrast, GP administration prevented CLP-induced cardiac dysfunction. Macrophage migration inhibitory factor (MIF) has been implicated as a major factor in cardiomyocyte apoptosis and cardiac dysfunction during septic shock. CLP increased myocardial MIF expression by 88.3% (P < 0.05) and cardiomyocyte apoptosis by 7.8-fold (P < 0.05) compared with sham control. GP administration, however, prevented CLP-increased MIF expression and decreased cardiomyocyte apoptosis by 51.2% (P < 0.05) compared with untreated CLP mice. GP also prevented sepsis-caused decreases in phospho-Akt, phospho-GSK-3β, and Bcl-2 levels in the myocardium of septic mice. These data suggest that GP treatment attenuates cardiovascular dysfunction in fulminating sepsis. GP administration also activates the phosphoinositide 3-kinase/Akt pathway, decreases myocardial MIF expression, and reduces cardiomyocyte apoptosis.

Page generated in 0.1006 seconds