• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

GAINING INSIGHTS INTO THE CONFORMATIONAL DYNAMICS OF PHOSPHOLIPASE C-BETA

Michelle M Van Camp (11161194) 21 July 2021 (has links)
<p>Phospholipase Cs (PLCs) are a family of enzymes that hydrolyze membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2) to generate inositol triphosphate (IP3) and diacylglycerol (DAG). These second messengers activate a variety of intracellular responses, including inflammation, vascular smooth muscle contraction, and cardiac hypertrophy. While much is known about how Gaq-mediated activation of PLCb occurs, the same cannot be said for Gbg-mediated activation. Residues within the PLCb-Gbg binding interface were previously identified in interior regions of the protein, suggesting the PH domain must undergo a conformational change to allow for Gbg-mediated activation. However, the role of PH domain conformational dynamics in Gbg-mediated activation of PLCb has yet to be determined. In this work, I discuss efforts to characterize conformational dynamics of the PLCb PH domain and its role in interactions of the enzyme with liposomes and Gbg. First, I generated a disulfide crosslink between the PH domain and EF hands1/2 of PLCb3, purified under oxidizing or reducing conditions, and conducted biochemical and structural tests to determine any differences in structure and/or function of the protein as compared to wild-type. Results of these studies provided the first direct structural evidence of PLCb PH domain dynamics in solution. Then, I discuss the rationale behind the generation of a surface cysteine-less PLCb for use in solvatochromic fluorescence assays in the presence and absence of liposomes and Gbg. Initial results of these studies suggest the PLCb PH domain favors a buried conformation alone and in the presence of Gbg or liposomes, and likely exists at an equilibrium between open and closed states.</p>

Page generated in 0.0556 seconds