• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 613
  • 203
  • 70
  • 53
  • 26
  • 25
  • 25
  • 13
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 4
  • Tagged with
  • 1244
  • 305
  • 199
  • 192
  • 185
  • 128
  • 125
  • 118
  • 113
  • 93
  • 82
  • 76
  • 71
  • 66
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Stathmin, a novel JNK substrate

Zhao, Tian January 2010 (has links)
Mammalian cells can initiate intracellular signalling pathways that activate pro-survival changes to maintain their integrity following their exposure to a range of extracellular stresses. One group of changes preserves cellular integrity through the regulation of cytoskeletal organization. Despite the recognised importance of maintaining microtubule (MT) networks, the specific mechanisms regulating cytoskeleton organisation in response to stress remain relatively poorly explored. Among the numerous proteins that regulate MT organisation, stathmin (STMN) is a key MT destabilising protein that regulates MT disassembly through its ability to bind tubulin dimers. The actions of STMN can be regulated by a number of growth factor-activated and cell cycle regulatory protein kinases. In preliminary work, our studies suggest the potential regulation of STMN by c-Jun N-terminal Kinase (JNK) in cells exposed to stress. Specifically, we observed changes in STMN phosphorylation which were coordinated with JNK activation. / This project has explored the contribution of stress-activated c-Jun N-terminal Kinase (JNK) to STMN phosphorylation observed during osmotic stress. More detailed in vitro biochemical analysis has revealed that JNK directly phosphorylates STMN. In addition, we have compared STMN phosphorylation by different MAPK family member. In particular, our results illustrated that JNK predominantly phosphorylate STMN on serine residue 38 (S38) whereas ERK most likely targeted STMN S25. By examining specifically the phosphorylation of the four regulatory serine residues in vitro, we proposed a model of hierarchical phosphorylation among STMN serine residues. Specifically, our results demonstrated that phosphorylation of S38 was a pre-requisite for S25 phosphorylation by JNK in vitro. Furthermore, our results also demonstrated the impacts of JNK binding domain (JBD) and tubulin on STMN phosphorylation in vitro. Overall, this project identified STMN as a novel JNK substrate. The results have broadened our understanding on the JNK-mediated STMN phosphorylation as the first step to provide deeper insights into the different functions of JNK in the mammalian stress response.
222

The roles of integrin-like proteins, tyrosine phosphorylation and F-actin in hyphal tip growth

Chitcholtan, Kanueng January 2006 (has links)
Tip growth, the mechanism by which hyphae, pollen tubes, root hairs, and algal rhizoids extend, is a complex and dynamic process that is characterised by localised extension at the extreme apex of the cell and morphological polarity. Its complexity suggests that high degree of regulation is needed to ensure that the characteristics of a particular cell type are maintained during growth. Regulation is likely to come about through bidirectional interplay between the cell wall and cytoplasm, although the mechanisms by which such cross-talk might occur are unknown. Results of this thesis present immunocytochemical data that indicate the presence of, and a close association between β4 integrin subunit-like proteins and proteins containing phosphorylated tyrosine residues in the oomycete Achlya bisexualis. When hyphae were plasmolysed, these proteins were present in wall-membrane attachment sites where there was also F-actin. A combination of immunoblots, ELISA, and a coupled enzyme assay suggest that phosphorylation may occur by both autophosphorylation and through the possible action of a tyrosine kinase. Tyrphostins, which are inhibitors of tyrosine kinases, abolished the anti-phosphotyrosine staining, inhibited the kinase activity, slowed tip growth and affected the organisation of the actin cytoskeleton, in a dose-dependent manner. In addition, results show A. bisexualis contains proteins epitopically similar to the rod domain of animal talin. However, these proteins do not co-localise with F-actin, and mainly locate at the sub-apical region in hyphae. For comparative purposes, Saccharomyces cerevisiae was also used to investigate the presence of β4 integrin subunit-like proteins and tyrosine phosphorylation. Immunoblotting showed that S. cereviaise contains a protein, which is found in the microsomal pellet fraction, that cross reacts with anti-β4 integrin subunit antibody. Furthermore, there are a number of proteins containing phosphotyrosine residues. Immunocytochemistry shows that this anti-β4 integrin staining is at the cortical site but anti-phosphotyrosine residues are distributed throughout cells. On the basis of an ELISA and a coupled enzyme assay, it is suggested that a soluble fraction of S. cerevisiae contains tyrosine kinase activity. This activity is strongly inhibited by tyrphostins.
223

The subcellular localisation, tissue expression, substrate specificity and binding partners of stress-activated protein kinase-3

Court, Naomi Wynne January 2004 (has links)
[Truncated abstract] Cells need to be able to detect changes in their surrounding environment and transduce these signals into the appropriate cellular compartments. One of the major ways that the cell achieves this signal transduction is through the process of phosphorylation. Protein kinases are the enzymes responsible for catalysing this transfer of phosphate groups from ATP to amino acid residues of their specific substrates. A subfamily of serine/threonine kinases known as the Mitogen-Activated Protein Kinases (MAPKs) is essential in a diverse range of cell processes including growth, metabolism, differentiation and death. The first identified MAPKs, the Extracellular Signal-Regulated Kinases (ERKs), were found to be activated in response to mitogenic stimuli such as growth factors. However, since the discovery of the ERKs, other pathways leading to the activation of related kinases have been recognised. These kinases are preferentially activated in response to stress, and are thus termed “Stress-Activated Protein Kinases” or SAPKs. They consist of the c-Jun N-terminal kinase isoforms 1, 2 and 3 (also called SAPK1γ, SAPK1α and SAPKβ respectively) and the p38 MAPKs, p38α, p38β, p38γ and p38δ (also called SAPK2a, SAPK2b, SAPK3 and SAPK4 respectively). A major challenge in this field has been to identify the substrates and functions of the SAPKs. This has been partly achieved by the development of inhibitors for the JNK MAPKs and SAPK2a/b. However, no inhibitors currently exist that specifically inhibit SAPK3 and SAPK4. Therefore, elucidating the function of these SAPKs has proved more difficult. Recent studies suggest that SAPK3 may play a unique role in the cell compared to other members of the p38 MAPK family. For example, several signalling proteins appear to specifically activate SAPK3 in certain circumstances while not activating other members of the p38 MAPK family. In addition, SAPK3 contains a unique sequence motif that allows it to bind to specialised domains known as PDZ domains. The interaction of SAPK3 with proteins containing these domains may regulate its subcellular localisation and interactions with other proteins in the cell. This project was undertaken to expand the knowledge on the expression, localisation, substrate specificity and binding partners of SAPK3. In Chapter 3 of this thesis, a SAPK3 monoclonal antibody was evaluated for its ability to specifically recognise endogenous SAPK3 protein. SAPK3 was found to be expressed in immortalised cell lines and primary cultures of neonatal rat myocytes, and to be colocalised with the mitochondria of these cells. This co-localisation remained unaltered in response to treatment with the nuclear export inhibitor Leptomycin B, and with exposure to osmotic shock, suggesting that SAPK3 substrates may be localised at the mitochondria
224

Characterization and phosphorylation site mapping of human pleckstrin /

Craig, Karen Leigh January 1996 (has links)
Thesis (Ph.D.) -- McMaster University, 1997 / Includes bibliographical references. Also available via World Wide Web.
225

Evaluation of eIF-2 alpha phosphorylation in patients with Alzheimer's disease /

Chen, Lu-hua. January 2007 (has links)
Thesis (M. Med. Sc.)--University of Hong Kong, 2007.
226

Crosstalk between MDM2 and Akt signaling pathway in oncogenesis

Ramamoorthy, Mahesh, January 1900 (has links)
Thesis (Ph.D.)--Virginia Commonwealth University, 2009. / Prepared for: Dept. of Biochemistry. Title from title-page of electronic thesis. Bibliography: leaves 83-98.
227

Identifying the importance of phosphorylation of SNAP-25 at Ser187 in protein kinase C-mediated enhancement of exocytosis

Shu, Yilong, January 2007 (has links)
Thesis (Ph.D.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 24, 2009) Vita. Includes bibliographical references.
228

Regulation of enzymes of energy metabolism - AMP deaminase and creatine kinase - in an anoxia tolerant turtle /

Zhou, Jiayun, January 1900 (has links)
Thesis (M.Sc.) - Carleton University, 2006. / Includes bibliographical references (p. 114-129). Also available in electronic format on the Internet.
229

Tyrosine phosphorylation of villin effects on actin dynamics, cell morphology and cell migration /

Tomar, Alok, January 2006 (has links) (PDF)
Thesis (Ph.D.)--University of Tennessee Health Science Center, 2006. / Title from title page screen (viewed on June 20, 2008 ). Research advisor: Seema Khurana, Ph.D. Document formatted into pages (xi, 154 p. : ill.). Vita. Abstract. Includes bibliographical references (p. 127-139).
230

Role of phosphorylation of the alpha one subunit in cyclic adenosine monophosphate dependent modulation of skeletal muscle calcium channels /

Brousal, Jeffrey P. January 1998 (has links)
Thesis (Ph. D.)-University of Washington, 1998. / Vita. Includes bibliographical references (leaves [67]-81).

Page generated in 0.1304 seconds