• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the Role of Hsp27 in Drosophila : Genetic and Phospho - mutant Analysis

Furbee, Emily Christine 01 August 2014 (has links)
HSP27, the Drosophila homolog of mammalian HspB1, is a nuclear sHsp that is both stress induced and developmentally regulated with a conserved cyto-protective function. It is multiply phosphorylated in vivo through an unconfirmed mechanism at unidentified residues. The effect of phosphorylation on its localization, oligomerization, and function is also not well understood. Here we report a genetic investigation into the role of Hsp27 in Drosophila development, and a preliminary investigation into the effect of phosphorylation on HSP27 localization and function in Drosophila S2 cells. Through a proteomic screen, a pro-apoptotic role for Hsp27 in embryonic developmentally regulated programmed cell death was suggested and supported by RNAi experiments, but not replicated using Hsp27null mutant stocks. These stocks were complicated by the intriguing appearance of multiple background mutations. Specific developmental defects in transgenic lines overexpressing phospho-mutant isoforms were then investigated. These too were subject to multiple independent incidences of background genetic mutation, which we believe may be related to Hsp27 mis-expression. We also studied the endogenous expression and localization pattern of HSP27 in stressed and unstressed Drosophila S2 cells. We found evidence that wild-type protein localization is influenced by stress. Finally, we took a first step toward understanding how phosphorylation might regulate HSP27 localization by examining the effect of targeted mutations of serine residues (S58, S71, and S75) on the localization pattern of exogenous HSP27. By characterizing the expression of endogenous and overexpressed HSP27 in Drosophila cells, we provide a foundation for future investigation into the regulated localization and function of HSP27 that can be extended to address the regulatory mechanisms that govern the protective capacities and oligomeric properties of phosphorylated HSP27 in Drosophila.

Page generated in 0.1417 seconds