11 |
Materiais nanoestruturados e filmes finos baseados em TiO2 para aplicação em fotocatálise / Nanostructured materials and thin films based on TiO2 for application in photocatalysisSajjad Ullah 17 July 2014 (has links)
O objetivo desta Tese é preparar e caracterizar nanopartículas de TiO2 e SiO2@ TiO2 e obter filmes finos baseados nesses materiais nanoestruturados usando a metodologia de preparação de filmes conhecida como layer-by-layer (LbL). Primeiramente, TiO2 amorfo sintetizado a partir de sulfato de titanila (TiOSO4) foi cristalizado por método de tratamento hidrotérmico brando (HTT). O efeito da temperatura e tempo de tratamento hidrotérmico na cristalinidade, tamanho de partícula e fotoatividade de TiO2 foi estudado. A análise de MET, DRX e área de superfície confirmou que o HTT a temperatura tão baixa quanto 105°C pode ser utilizada para obter as nanopartículas de anatase com boa cristalinidade (~95%), pequeno tamanho de cristalito (<10 nm), alta área de superfície (>200 m2.g-1) e excelente seletividade da fase. Em uma segunda etapa do projeto, o nanocatalisador de TiO2 foi depositado, via rota sol-gel, na superfície de NPs de sílica Stöber (diâmetro 200 nm), formando um sistema core@shell (SiO2@ TiO2). O objetivo desse processo foi de se obter melhor estabilidade térmica (1000°C), boa dispersão e menor aglomeração do nanocatalisador (TiO2). As análises de microscopia eletrônica (MEV e MET) confirmaram a formação de uma camada porosa (espessura 10-30 nm) de TiO2 formadas por cristalitos com cerca de 5 nm. Um estudo das propriedades ópticas das amostras SiO2@ TiO2 mostrou que o deslocamento no onset de absorção é função do espalhamento Rayleigh. Finalmente, desenvolveu-se um novo e versátil procedimento LbL para a preparação de filmes multicamadas, porosos e uniformes de TiO2 empregando fosfato de celulose (CP) como polieletrólito eficiente e não convencional. A formação dos filmes (CP/ TiO2 e CP/ TiO2/HPW) foi monitorada por espectroscopia UV/Vis e a interação entre os componentes dos filmes (CP, TiO2 e HPW) foi estudada pelas técnicas MET, XPS e FTIR. Estes filmes LbL apresentaram boa fotoatividade para degradação de ácido esteárico, cristal violeta e azul de metileno sobre irradiação UV. Os filmes CP/HPW formados em celulose bacteriana apresentaram boa resposta fotocrômica, que é aumentada pela presença do TiO2 devido a uma transferência eletrônica interfacial do TiO2 para o HPW. A interface entre nanopartículas de titânia e nanopartículas de ácido fosfotungstico foi pela primeira vez caracterizada por Microscopia Eletrônica de Transmissão como sendo não-cristalina. Este método simples e ambientalmente amigável pode ser utilizado para formar recobrimentos em uma grande variedade de superfícies com filmes fotoativos de TiO2 e TiO2/HPW. / The aim of the present investigation was to prepare and characterize TiO2 and core@shell (SiO2@TiO2) nanoparticles (CSNs) and form layer-by-layer (LbL) films with these nanoparticles (NPs) on various substrates. Firstly, amorphous TiO2 were prepared from oxotitanium (IV) sulfate (TiOSO4) and crystallized by low-temperature hydrothermal treatment (HTT). The effect of hydrothermal temperature and treatment time on crystallinity, particle size and photoactivity of TiO2 was studied. The TEM, XRD and BET surface area analysis confirmed that HTT at temperature as low as 105°C can be used to obtain phase-pure anatase nanoparticles with good crystallinity (~95%), small crystallite size (<10 nm), high surface area (>200 m2.g-1) and excellent phase selectivity. Secondly, TiO2 nanocatalyst was directly deposited, via sol-gel route, on the surface of Stöber silica NPs of around 200 nm in a core@shell (SiO2@ TiO2) configuration to obtain better thermal stability, good dispersion and less agglomeration of the nanocatalyst. SEM and TEM observation confirmed the formation of a porous anatase shell of crystalline TiO2 consisting of around 5-8 nm small crystallites, in accordance with XRD results. The shell thickness was varied between 10-30 nm by varying the quantity of precursor titanium (IV) isopropoxide (TiP). Compared to the uncoated silica, the BET surface area also increased by 147-365% depending on the amount of TiP added during synthesis step. The effect of shell morphology and TiO2 loading on surface area and photoactivity has been studied and compared among different CSNs. Finally, a new and versatile LbL procedure for the preparation of porous and highly dispersed multilayer films of TiO2 and phosphotungstic acid (HPW) on different substrates was developed using Cellulose Phosphate (CP) as an efficient and non-conventional binder. The films formation was monitored by UV/Vis spectroscopy and the interaction between the films components (CP, TiO2 and HPW) was studied by HRTEM, XPS and FTIR techniques. These CP/ TiO2 and CP/ TiO2/HPW LbL films showed good photoactivity against stearic acid (SA), crystal violet (CV) and methylene blue (MB) under UV irradiation. The CP/HPW films formed on bacterial cellulose showed good photochromic response, which is enhanced in presence of TiO2 due to an interfacial electron transfer from TiO2 to HPW. This simple and environmentally safe method can be used to form coatings on a variety of surfaces with photoactive TiO2 and TiO2/HPW films.
|
12 |
Preparação via processo sol-gel de catalisadores a base de níquel na reação de deslocamento gás-água: efeito do ácido fosfotungstico e organosilanos / Sol-gel synthesis of Ni-based catalyst: the effect of phosphotungstic acid and organosilane on the catalytic activity in water-gas shift reactionRenato Antonio Barba Encarnación 14 March 2014 (has links)
Esta dissertação mostra um estudo preliminar da preparação de precursores catalíticos a base de níquel (II) e de sua conversão em catalisadores de xerogéis contendo níquel (NS), bem como o estudo da sua atividade catalítica na reação de deslocamento gás-água. Esta reação foi escolhida como reação modelo para avaliar a atividade catalítica, em especial frente a adição do ácido fosfotungstico (HPW) como promotor catalítico e de organosilanos como agentes promotores da dispersão do Ni. Foram preparados catalisadores NS e NS-x (x = 0,5; 1; 2; 3; 5 e 10% em massa de HPW) via processo sol-gel. A caracterização estrutural foi realizada utilizando-se as técnicas de Energia Dispersiva de Raios X, Difratometria de Raios X, Redução a Temperatura Programada, Fisissorção de Nitrogênio, Espectroscopia de Absorção de Raios X e Espectroscopia de Absorção na Região do Infravermelho. Os testes catalíticos foram realizados no Laboratório de Catálise Heterogênea do IQSC/USP numa temperatura de 250-425 °C, em uma lin ha de reação acoplada a um cromatógrafo a gás para análises in situ dos produtos reacionais gasosos. Os resultados obtidos da primeira parte mostraram que a adição do HPW até 2% em massa de precursor catalítico leva a uma melhora gradual na atividade catalítica de 10 a 31 % medido pela taxa de conversão do CO. Contudo acima de 2% ocorre uma queda de atividade catalítica resultando num comportamento global da conversão de CO do tipo gaussiano com o máximo em 2%. Para explicar este comportamento um modelo qualitativo é proposto baseado na formação de fosfotungstato de níquel amorfo acima de 2%. Na segunda parte do trabalho, a concentração de HPW foi fixada em 2% e a temperatura de reação em 425 °C e foram adicionados organosilanos nitrogenados (amino e nitrila) para avaliar a sua capacidade de funcionar como agentes de dispersão do cátion metálico no precursor híbrido (Ormosil) e do metal no catalisador. O catalisador proveniente do precursor contendo grupo amina possui maior atividade catalítica que aquele contendo nitrila, porém ambos possuem menor atividade que o xerogel catalítico obtido de precursores sem grupos nitrogenados. Contudo, os catalisadores preparados a partir de Ormosils mostravam-se estáveis ao longo do tempo da reação estudada quando comparados com os xerogeis NS-x. / This dissertation describes the preparation of Ni (II)-based catalyst precursor material and its subsequent conversion to Ni-based xerogels catalyst as well as the catalytic activity of the resultant catalyst in water-gas shift reaction. The water-gas shift reaction was selected as a model reaction for the evaluation of catalytic activity of the prepared catalysts. The effect of addition of phosphotungstic acid (HPW) as an activity promoting agent and organosilane as dispersing agents of Ni was also studied. For this purpose, Ni-based catalyst (NS-x) containing various amounts (x) of HPW (x= 0, 0.5, 1, 2, 3, 5, 10 wt. %) were prepared using the sol-gel process. These catalysts were characterized by x-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), temperature-programmed reduction (TPR), nitrogen adsorption measurements (BET method) and Fourier transform infrared spectroscopy (FTIR). The catalytic tests were performed at a temperature of 250-425 °C in a reactor coupled with gas chromatograph (GC) for direct in situ analysis of the reaction products. The results obtained showed that addition of HPW up to 2 wt % leads to an increase in the efficiency of the catalyst from 10% to 31%, as measured by the rate of conversion of CO. However, further increase in the amount of HPW above 2 wt. % leads to a decrease in activity of the catalyst. A qualitative model based on the formation of amorphous Ni-phosphotungstate salt is proposed to explain this behaviour of the catalyst. In a second part of this study, the amount of HPW (2 wt. %) and temperature (425 °C) were fixed and nitrogenate d silanes with amine and nitrile functional groups were added to the catalyst to evaluate the role of these ormosils as dispersing agents for metallic cations in the hybrid precursor material as well as metallic nickel in the final catalyst. The catalyst derived from precursor containing ormosils with ammine functional groups (3-Aminopropyltriethoxysilane) showed better catalytic activity than those containing nitrile functional groups (4-(Triethoxysilyl)butyronitrile). However, the catalytic activity of the catalysts obtained using ormosils bearing nitrogenated silanes was lower than xerogels catalyst prepared without addition of these silanes. Although, the catalysts prepared using the ormosils bearing nitrogenated silanes showed higher stability than NS-x catalyst.
|
13 |
Effect of Phosphotungstic Acid in Electrodes on PEMFC Performance at Elevated Temperature and Low HumidityGopu, Susmitha 25 July 2012 (has links)
No description available.
|
14 |
Development of new proton conducting materials for intermediate temperature fuel cellsaoxiang, Xiaoxiang January 2010 (has links)
The work in this thesis mainly focuses on the preparation and characterization of several phosphates and solid oxide systems with the aim of developing new proton conducting materials for intermediate temperature fuel cells (ITFCs). Soft chemical methods such as sol-gel methods and conventional solid state methods were applied for the synthesis of these materials. Aluminum phosphate obtained by a solution method is single phase and belongs to one of the Al(H₂PO₄)₃ allotropies with hexagonal symmetry. The material is stable up to 200°C and decomposes into Al(PO₃)₃ at a higher temperature. The electrical conductivity of pure Al(H₂PO₄)₃ is on the order of 10⁻⁶-10⁻⁷ S/cm, very close to the value for the known proton conductors AlH₃(PO₄)₂•3H₂O and AlH₂P₃O₁₀•2H₂O. Much higher conductivity is observed for samples containing even a trace amount of excess H₃PO₄. It is likely that the conduction path gradually changes from grain interior to the surface as the acid content increases. The conductivity of Al(H₂PO₄)₃-0.5H₃PO₄ exhibited a good stability over the measured 110 hours. Although tin pyrophosphate (SnP₂O₇) has been reported to show a significantly high conductivity (~10⁻² S/cm) at 250°C in various atmospheres, we observed large discrepancies in the electrical properties of SnP₂O₇ prepared by different methods. Using an excess amount of phosphorous in the synthetic procedure generally produces SnP₂O₇ with much higher conductivity (several orders of magnitude higher) than samples with stoichiometric Sn:P ratios in their synthetic procedure. Solid state ³¹P NMR confirmed the presence of residual phosphoric acid for samples with excess starting phosphorous. Transmission Electron Microscope (TEM) confirmed an amorphous layer covered the SnP₂O₇ granules which was probably phosphoric acid or condensed phases. Thereby, it is quite likely that the high conductivity of SnP₂O₇ results mainly from the contribution of the residual acid. The conductivity of these samples exhibited a good stability over the measured 80 hours. Based on the observations for SnP₂O₇, we developed a nano core-shell structure based on BPO₄ and P₂O₅ synthesised by solid state methods. The particle size of BPO₄ using this method varied between 10-20 nm depending on the content of P₂O₅. TEM confirmed the existence of an amorphous layer that is homogeneously distributed. The composite exhibits the highest conductivity of 8.8×10⁻² S/cm at 300°C in air for 20% extra P₂O₅ and demonstrates a good stability during the whole measured 110 hours. Polytetrafluoroethylene (PTFE) was introduced into the composites in order to increase malleability for fabrication. The conductivity and mechanical strength were optimized by adjusting the PTFE and P₂O₅ content. These organic-inorganic composites demonstrate much better stability at elevated temperature (250°C) over conventional SiC-H₃PO₄-PTFE composites which are common electrolytes for phosphoric acid fuel cells (PAFCs). Fuel cells based on BPO₄-H₃PO₄-PTFE composite as the electrolyte were investigated using pure H₂ and methanol as fuels. A maximum power density of 320 mW/cm² at a voltage of 0.31 V and a maximum current density of 1.9 A/cm² at 200°C were observed for H₂/O₂ fuel cells. A maximum power density of 40 mW/cm² and maximum current of 300 mA/cm² 275°C were observed when 3M methanol was used in the cell. Phosphoric acid was also introduced into materials with internal open structures such as phosphotungstic acid (H₃PW₁₂O₄₀) and heteropolyacid salt ((NH₄)₃PW₁₂O₄₀), for the purpose of acquiring additional connections. The hybrids obtained have a cubic symmetry with enlarged unit cell volume, probably due to the incorporation of phosphoric acid into the internal structures. Solid state ³¹P NMR performed on H₃PW₁₂O₄₀-xH₃PO₄ (x = 0-3) showed additional peaks at high acid content which could not assigned to phosphorus from the starting materials, suggesting a strong interaction between H₃PW₁₂O₄₀ and H₃PO₄. The conductivity of hybrids was improved significantly compared with samples without phosphoric acid. Fourier transform infrared spectra (FT-IR) suggest the existence of large amount of hydrogen bonds (OH••••O) that may responsible for the high conductivity. A H₂/O₂ fuel cell based on H₃PW₁₂O₄₀-H₃PO₄-PTFE exhibited a peak power density of 2.7 mW/cm² at 0.3 V in ambient temperature. Solid oxide proton conductors based on yttrium doped BaZrO₃ were investigated by introducing potassium or lanthanum at the A-sites. The materials were prepared by different methods and were obtained as a single phase with space group Pm-3m (221). The unit cell of these samples is slightly smaller than the undoped one. The upper limit of solid solution formation on the A-sites for potassium is between 5 ~ 10% as introducing more K results in the occurrence of a second phase or impurities such as YSZ (yttrium stabilized zirconium). K doped Barium zirconates showed an improved water uptake capability even with 5% K doping, whereas for La doped ones, water uptake is strongly dependent on particle size and synthetic history. The conductivity of K doped BaZrO₃ was improved by a factor of two (2×10⁻³ S/cm) at 600°C compared with undoped material. Fuel cells based on Pt/Ba₀₋₉₅K₀₋₀₅Zr₀₋₈₅Y₀₋₁₁Zn₀₋₀₄O[subscript(3-δ)]/Pt under humidified 5% H₂/air conditions gave a maximum power density 7.7 mWcm⁻² at 718°C and an interfacial resistance 4 Ωcm⁻². While for La doped samples, the conductivity was comparable with undoped ones; the benefits of introducing lanthanum at A-sites may not be so obvious as deficiency of barium is one factor that leads to the diminishing conductivity.
|
Page generated in 0.0888 seconds