31 |
Application de la méthode "multiconfiguration time-dependent Hartree" aux processus de photodissociation des complexes ArHBr et Ar2HBrTrin, Jérôme. Pouilly, Brigitte. January 2001 (has links) (PDF)
Thèse de doctorat : Sciences physiques : Lille 1 : 2001. / N° d'ordre (Lille) : 3002. Résumé en français et en anglais. Bibliogr. en fin de chapitres.
|
32 |
Molecular beam studies of selected radical isomers and photolytic precursors /Morton, Melita Luise. January 2002 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Chemistry, 2002. / Includes bibliographical references. Also available on the Internet.
|
33 |
Advancement of photodissociation and electron-based tandem mass spectrometry methods for proteome analysisMadsen, James Andrew 12 October 2011 (has links)
The number and types of diagnostic ions obtained by infrared multiphoton dissociation (IRMPD) and collision induced dissociation (CID) were evaluated for supercharged peptide ions created by electrospray ionization of solutions spiked with mnitrobenzyl
alcohol. IRMPD of supercharged peptide ions increased the sequence
coverage compared to that obtained by CID for all charge states investigated.
Multiply charged, N-terminally derivatized peptides were subjected to electron transfer reactions to produce singly charged, radical species. Upon subsequent “soft” CID, highly abundant z-type ions were formed nearly exclusively, which yielded
simplified fragmentation patterns amenable to de novo sequencing methods. Furthermore, the simplified series of z ions were shown to retain labile phosphoric acid moieties.
Infrared multiphoton dissociation (IRMPD) was implemented in a novel dual pressure linear ion trap for rapid “top-down” proteomics. Due to secondary dissociation,
IRMPD yielded product ions in significantly lower charge states as compared to CID, thus facilitating more accurate mass identification and streamlining product ion assignment. This outcome was especially useful for database searching of larger proteins (~29 kDa) as IRMPD substantially improved protein identification and scoring
confidence. Also, IRMPD showed an increased selectivity towards backbone cleavages N-terminal to proline and C-terminal to acidic residues (especially for the lowest
precursor charge states). Ultraviolet photodissociation (UVPD) at 193 nm was implemented on a linear ion trap mass spectrometer for high-throughput proteomic workflows. Upon irradiation by a single 5 ns laser pulse, efficient photodissociation of tryptic peptides was achieved with production of a, b, c, x, y, and z sequence ions, in addition to immonium ions and v and w
side-chain loss ions. The factors that influence the UVPD mass spectra and subsequent in silico database searching via SEQUEST were evaluated. 193 nm ultraviolet photodissociation (UVPD) was employed to sequence singly and multiply charged peptide anions. Upon dissociation by this method, a-/x-type, followed by d and w side-chain loss ions, were the most prolific and abundant sequence
ions, often yielding 100% sequence coverage. LC-MS/UVPD analysis using high pH mobile phases yielded efficient characterization of acidic peptides from mitogen-activated protein kinases. / text
|
34 |
Photoinitiated Dynamics of Cluster Anions via Photoelectron Imaging and Photofragment Mass SpectrometryVelarde, Luis Antonio January 2008 (has links)
Mass-selected cluster anions are employed as model micro-solutions to study solvent effects on the structural motifs and electronic structure of anionic solutes, including the roles of the solvent in controlling the outcomes of photochemical processes. Interaction of light with cluster anions can potentially lead to cluster photodissociation in addition to photodetachment. We investigate these competing processes by means of photoelectron imaging spectroscopy combined with tandem time-of-flight (TOF) mass spectrometry. Photoelectron images are reported for members of the [(CO2)n(H2O)m]- cluster series. For homogeneous solvation, the photodetachment bands show evidence of cluster core switching between a CO2- monomer anion and a covalent (CO2)2- dimer anionic core, confirming previous observations. The Photoelectron Angular Distributions (PADs) of the monomer- and dimer-based clusters reveal an interference effect that result in similar PADs. Stabilization of the metastable CO2- anion by water solvent molecules is highlighted because its ability to "trap" the excess electron on CO2. Most surprising is the effect of the water solvent in quenching the autodetachment channel in excited states normally embedded in the electron detachment continuum, allowing excited CO2-(H2O)m clusters to follow reaction paths that lead to cluster fragmentation. Observed O- based photoproducts are attributed to photodissociation of the CO2- cluster core and are dominant for small parent clusters, whereas a water evaporation channel dominates for larger clusters. Addition of a second CO2 to these clusters is shown to preferentially form monomer based clusters, whose photodissociation exhibit an additional CO3- based channel, characteristic of a photoinitiated intracluster ion-molecule reaction between nascent O- and the additional CO2 solvent molecule. Changes in the PADs of NO- are monitored as a function of electron kinetic energy for the NO-(N2O)n and NO-(H2O)n cluster anions. In contrast with hydration, angular distributions become progressively more isotropic for the N2O case, particularly when the photoelectron kinetic energies are in the vicinity of the 2Pi shape resonance of the N2O solvent molecules. First time observation of the CH3SOCH- anion of dimethylsulfoxide is reported along with the photoelectron images of this organic anion and of the monohydrated cluster. Observed photodissociation products are HCSO- and SO-.
|
35 |
Intramolecular vibrations and electronically nonadiabatic dynamics in photodissociation reactions /Forde, Nancy Roberta. January 1999 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Chemistry, August 1999. / Includes bibliographical references. Also available on the Internet.
|
36 |
Photodissociation of gas phase organic cationsHuang, Fu-shiuan January 1991 (has links)
No description available.
|
37 |
Mixed quantum/classical dynamics of photodissociation of H<sub>2</sub>O and Ar-H<sub>2</sub>OChen, Feng 19 October 2004 (has links)
No description available.
|
38 |
Développement d’une méthodologie couplant la photodissociation laser et la spectrométrie de masse haute résolution pour l’identification de nouveaux biomarqueurs / Development of a new methodology coupling photodissociation and high-resolution mass spectrometry with the aim of identifiying new biomarkersGarcia, Leny 29 November 2017 (has links)
La spectrométrie de masse est un outil performant pour identifier des biomarqueurs protéines dans des fluides biologiques. Plusieurs modes sont accessibles dont le mode « Data Independent Acquisition » (DIA), qui permet une sélection et une fragmentation exhaustive de tous les peptides détectables par l'appareillage. Cependant, ce mode génère des spectres de (co)-fragmentation très complexes rendant l'étape d'identification délicate. Pour surmonter cette limitation, nous nous sommes tournés vers une méthode d'activation des ions spécifique. La photodissociation laser (LID) à 473 nm, longueur d'onde à laquelle les peptides n'absorbent pas naturellement, a été implémentée dans un appareil Qexactive. La spécificité de fragmentation est induite après dérivation spécifique des peptides à cystéine (acide aminé rare présent globalement à 2 % mais présent dans 89 % des protéines) à l'aide d'un chromophore absorbant à 473 nm. Dans un premier temps, une bibliothèque de 354 spectres LID de peptides à cystéine dérivés a été créée pour le développement de la méthode DIA-LID. Cette méthodologie DIA-LID a ensuite été utilisée pour identifier et quantifier des biomarqueurs protéines kinases humaines putatifs endogènes au sein d'un extrait cellulaire mammaire cancéreux humain. Les comportements de fragmentation de 401 peptides à cystéine dérivés en LID à 473 nm ont également été étudiés permettant l'optimisation des méthodes d'identification et de quantification. Pour finir, une nouvelle méthodologie, intitulée C-trap-LID, a été appliquée pour repérer et extraire rapidement tous les m/z des ions précurseurs détectables par l'appareillage ayant photo-fragmentés dans une matrice complexe / Mass spectrometry is a powerful tool to detect putative proteins biomarkers in biological samples. Several methods are accessible, including Data Independent Acquisition (DIA) which allows the fragmentation of all detectable peptides in high resolution mass spectrometer. However, DIA methods are not able to exhaustively identify compounds due to the excessive complexity of fragmentation spectra of multiple precursor ions. Thus, we developed an alternative technique that adds specificity during fragmentation step to detect only a subset of peptides. We replaced the classical gas-collision fragmentation by a highly specific laser-induced photodissociation (LID) at 473 nm, for which peptides do not naturally absorb, in a Q-exactive. The specific absorption and photofragmentation is induced by grafting an adequate quenching chromophore to the thiol group of cysteine-containing peptides (a rare amino acid with a frequency of 2 % but present in 89 % of all human proteins) through a chemically controlled route. First, to develop the DIA-LID method, a spectral library including LID spectra of 354 cysteine-containing peptides was built. Then, this methodology was used to identify and quantify putative human protein kinases biomarkers in human cancerous mammalian cells. Simultaneously the fragmentation behavior of 401 derivatized cysteine-containing peptides was studied to rationalize the choice of peptides to provide the maximum of information to identify them in LID for discovery approaches. In closing, a new methodology named C-trap-LID, was introduced and applied to spot and extract quickly m/z related to all detectable derivatized cysteine-containing compounds in complex medium
|
39 |
Evolution des poussières interstellaires : apport des données de l'observatoire spatial Herschel / Evolution of interstellar dust in light of Herschel Space Observatory dataArab, Heddy 28 September 2012 (has links)
Les poussières interstellaires sont des particules solides dont les tailles sont comprises entre le nanomètre et le micron. Bien que représentant une faible proportion en masse du milieu interstellaire, elles jouent un rôle essentiel dans son évolution et de façon générale dans l'évolution des galaxies. Les poussières interstellaires sont observables dans les domaines UV et visible en extinction et de l'infrarouge au submillimétrique en émission. La conduite d'observations astrophysiques conjuguée au développement de modèles numériques de poussières et à l'étude d'analogues de grains en laboratoire permet d'affiner notre connaissance de ces particules solides. En particulier, il existe aujourd'hui de nombreuses preuves d'une évolution des grains dans le milieu interstellaire. Cependant, les processus physiques responsables de cette évolution sont aujourd'hui encore mal connus. Afin de comprendre comment évoluent les grains avec les propriétés physiques, il est nécessaire d'observer les poussières dans différents environnements. Les régions de photodissociation (PDR) sont des zones du milieu interstellaire présentant l'avantage de voir leur champ de rayonnement et leur densité locale varier sur de faibles échelles spatiales (~10- 20 arcsec). De plus, la grande variété de traceurs du gaz permet de contraindre efficacement les conditions physiques dans les PDR. Toutefois, l'émission des grains à l'équilibre thermique dans les PDR, qui domine l’émission dans l’infrarouge lointain, n'était que rarement résolue spatialement. Les instruments PACS et SPIRE, à bord de l'observatoire spatial Herschel, permettent aujourd'hui de disposer d'observations spectro-photométriques entre 70 et 500 µm, dont la résolution spatiale (comprise entre 5 et 35 arcsec) en fait des données idéales pour l'étude de l'évolution des poussières dans les PDR. Nous présentons l'analyse des observations Herschel de trois PDR, la Barre d'Orion, la Tête de Cheval et la NGC 7023 Est, caractérisées par des conditions physiques différentes. En combinant ces données aux observations Spitzer, nous pouvons étudier simultanément l'émission des poussières entre 3.6 et 500 µm à différentes positions de la PDR. Pour cela, des profils d'intensité reliant l'étoile à la PDR sont extraits à chaque longueur d'onde puis comparés spatialement. Un décalage de la position du pic d’émission dû au transfert radiatif est observé : plus la longueur d'onde est grande, plus le pic est éloigné de l'étoile excitatrice. Par contre, la comparaison entre les profils d'intensité observés et ceux calculés à partir d'un code de transfert de rayonnement couplé à un modèle de poussières correspondant aux propriétés du milieu interstellaire diffus révèle des différences liées à une évolution des grains pour chaque PDR étudiée. A la vue des écarts, nous concluons que l'abondance des PAH, plus petite composante de grains interstellaires, est plus faible dans les PDR que dans le milieu diffus suggérant la présence d'un phénomène de photo-destruction et/ou d'agrégation des PAH sur les gros grains dans les PDR. Ceci pourrait être accompagné d'une augmentation d'émissivité des gros grains liée à un mécanisme de coagulation. Les observations Herschel des PDR nous offrent également l'opportunité de nous intéresser aux variations du spectre des grains à l'équilibre thermique avec le rayonnement au travers des PDR. Un ajustement d'une loi de corps noir modifié permet d'extraire une épaisseur optique, une température et un indice spectral des grains. L'étude de ces deux derniers paramètres révèle une anticorrélation confirmant ainsi des travaux précédents. Cependant, la comparaison de la dépendance de la température et de l'indice spectral dans différentes régions montre différents comportements et exclut une dépendance universelle entre ces deux paramètres. Ce résultat ouvre de nouvelles perspectives quant à l'étude de l'évolution des poussières dans le milieu interstellaire. / Interstellar dust grains are nanometre to micrometer-sized particles. Although a weak proportion of the total interstellar mass is at solid state, dust plays a fundamental role in the evolution of the interstellar medium (ISM) and of the galaxy itself. Grains can be observed in the UV and visible wavelength through extinction whereas their emission is in the infrared to sub-millimetre range. Astrophysical observations combined to numerical models and laboratory studies of dust analogues improve our comprehension of the nature and the physics of interstellar grains. For example, evidence of dust evolution in the interstellar medium are now numerous, even if the physical processes responsible of this evolution are still poorly understood. Understanding how grains evolve with physical conditions requires observations of various environments. Photodissociation regions (PDRs) are zones of the ISM where the radiation field and the local density vary on short spatial scales (~10- 20 arcsec). Moreover the many gas tracers offer the opportunity to constraint efficiently the physical conditions within PDRs. Past missions such as ISO and Spitzer allow to study the evolution of dust in the near-Infrared range. At longer wavelengths, where the grains at thermal equilibrium with the radiation dominate the emission, instruments rarely resolved the spatial emission in PDRs. PACS and SPIRE instruments onboard Herschel Space Observatory provide spectro-photometric data between 70 and 500 µm. Their high spatial resolution (from 5 to 35 arcmin) makes these observations ideal for the study of dust evolution in PDRs. We present here an analysis of Herschel observations of three PDRs: the Orion Bar, the Horsehead and NGC 7023 East, characterized by different physical conditions. By combining these data with shorter wavelength observations from Spitzer, we can study the dust emission spectrum from 3.6 to 500 µm at different positions within the PDR. Intensity profiles are extracted along the PDR at each wavelength and spatially compared. We highlight a shift between the position of the emission peak: the longest the wavelength, the furthest the peak from the exciting star. This is a consequence of the radiative transfer in the PDR as shown from a plane parallel transfer code coupled with a dust model. The comparison between the observed and the modelled profiles computed with typical diffuse dust abundances and properties shows differences linked to dust evolution in each studied PDR. These discrepancies between the data and the model indicate a lower Polycyclic Aromatic Hydrocarbon (PAH, the smallest dust component) abundance in the PDR than in the diffuse medium suggesting photo-destruction and/or PAH sticking on larger grains. This could be accompanied by an increase of big grain emissivity linked to coagulation. Herschel's observations of PDR also offer the chance to probe the variations of the grains at thermal equilibrium with the radiation through PDRs. A modified blackbody fit allows to compute an optical depth, a temperature and a dust spectral emissivity index. Those two last parameters are clearly anticorrelated, which confirms previous works. However, comparing the temperature and emissivity index dependence in different regions shows various behaviours, which excludes a universal law between these parameters. This result opens new perspectives in the study of the dust evolution in the interstellar medium.
|
40 |
High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical latticeMcDonald, Michael Patrick January 2016 (has links)
Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, made possible largely by the development of narrow-linewidth lasers and techniques for trapping and cooling at ultracold temperatures. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. These possibilities are all consequences of the richness of molecular structure, which is governed by physics substantially different from that characterizing atomic structure. This same richness of structure, however, increases the complexity of any molecular experiment manyfold over its atomic counterpart, magnifying the difficulty of everything from trapping and cooling to the comparison of theory with experiment.
This thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. Our molecules are produced via photoassociation of ultracold strontium atoms followed by spontaneous decay to a stable ground state. We describe a thorough set of measurements characterizing the rovibrational structure of very weakly bound (and therefore very large) ⁸⁸Sr₂ molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. The physical intuition gained in these experiments applies generally to weakly bound diatomic molecules, and suggests extensive applications in precision measurement and metrology. In addition, we present a detailed analysis of the thermally broadened spectroscopic lineshape of molecules in a non-magic optical lattice trap, showing how such lineshapes can be used to directly determine the temperature of atoms or molecules in situ, addressing a long-standing problem in ultracold physics. Finally, we discuss the measurement of photofragment angular distributions produced by photodissociation, leading to an exploration of quantum-state-resolved ultracold chemistry.
|
Page generated in 0.0899 seconds