• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving the understanding of photoelectron currents on Solar Orbiter : Utilizing theory and empirical measurements

Marminge, Melker January 2023 (has links)
Spacecraft experience electric currents on conductive materials exposed to sunlight, which introduces noise in scientific data. These currents are mainly due to the photoelectric effect and should therefore be proportional to the inverse square heliocentric distance. However, measurements on the Solar Orbiter spacecraft suggests that these currents deviate from this proportionality, especially at perihelia. This paper aims to improve the understanding of how and why these induced currents vary by creating a model to describe the phenomenon. The investigation was based on thermal bending, thermionic emission, the photoelectric effect, outgassing, and a temperature dependence of the work function. Through numerical approximation, the thermal bending of the approximately 6m modeled antennas was estimated to be almost three meters at perihelion and the estimated outgassing fit the secular change in the data well. The direct impact of thermionic emissions was determined to be negligible. The final model was created utilizing a secular fit of the outgassing, the variation in the cross-section due to thermal bending, a yield proxy was created to model the impact of the work function temperature dependence, and the MgII index as a proxy for the solar EUV intensity. The final model was approximately accurate within 10%. Several future improvements are discussed, such as the inclusion of secondary emission or the empirical determination of the model deviation.

Page generated in 0.0961 seconds