• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

STACKING DEFECTS IN GaP NANOWIRES: OPTICAL AND ELECTRONIC EFFECTS AND ADSORPTION OF CATECHOL GROUP ONTO METAL OXIDE SURFACE

Gupta, Divyanshu January 2019 (has links)
The research performed aims to develop a deeper understanding and prediction of behaviour of complex chemical and physical systems using density functional theory (DFT) modelling complemented by experimental techniques. We focus on phenomena relevant to practical applications of semiconducting materials. Semiconductor nanowires, produced by the vapor-liquid-solid method are being considered for applications in photo sensors, field effect transistors, light emitting diodes (LEDs) and energy harvesting devices. In particular, semiconductor nanowire based photovoltaic devices show potential for lower cost due to less material utilization and greater energy conversion efficiency arising from enhanced photovoltage or photocurrent due to hot carrier or multiexciton phenomena enhanced light absorption, compared to conventional thin film devices. Further, freedom from lattice matching requirements due to strain accommodation at the nanowire surfaces enable compatibility with a wide variety of substrates including Silicon. Thus understanding and improving the optoelectronic properties of nanowires is of great interest. In the first paper, we study the effect of planar defects on optoelectronic properties of nanowire based semiconductor devices. Specifically, we were interested in investing the origin of various features observed in the photoluminisence (PL) spectrum of GaP nanowire using density functional modelling, which are not well understood. In the second paper, we work to model bonding characteristics during a chemical synthesis. We focus on the synthesis of nanoparticles for supercapacitor application. In the past decade, comprehensive research has been emphasized on manganese oxides for electrochemical supercapacitor (ECS) applications. Mn3O4 has gained significant interest due to its compatibility with capping agents and the unique spinel structure allows for potential modifications with other cations. Many metal oxide synthesis techniques are based on aqueous processing. The synthesized particles are usually dried and redispersed in organic solvents to incorporate water-insoluble additives such as binders to fabricate films and devices. However, during the drying step nano-structures are highly susceptible to agglomeration, which can be attributed to the condensation reactions occurring between particles and reduction in surface energy. Poor electrolyte access due to agglomeration and low intrinsic conductivity of Mn3O4 are detrimental to the performance of Mn 3O4 electrode especially at high active mass loadings. Numerous attempts have focused on controlling size and morphology of Mn3O4 nanostructures using capping agents, which have strong adhesion to particles surface to inhibit agglomeration. Catechol containing molecules have been used for dispersion of metallic nanoparticles and fabrication of composite thin films, resulted in narrow size distribution of nanoparticles and strong adhesion to substrates. Despite the experimental results showing good adsorption of catechol group to metal atoms, the mechanism is unclear since it is highly influenced by synthesis parameters. We use Infrared spectroscopy in conjugation with density functional modelling to understand the binding mechanism of 3,4 dihydroxy benzaldehyde onto Mn3O4 surface. / Thesis / Master of Applied Science (MASc)

Page generated in 0.0595 seconds