• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 12
  • 12
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Solar radiative fluxes for realistic extended broken cloud fields above reflecting surfaces.

Barker, Howard W. Davies, John A. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1991. / Source: Dissertation Abstracts International, Volume: 53-01, Section: B, page: 0178. Supervisor: John A. Davies.
12

Desenvolvimento de um software de Monte Carlo para transporte de fótons em estruturas de voxels usando unidades de processamento gráfico / Development of a GPU Monte Carlo software for photon transport in voxel structures

Bellezzo, Murillo 26 June 2014 (has links)
Sendo o método mais preciso para estimar a dose absorvida em radioterapia, o Método de Monte Carlo (MMC) tem sido amplamente utilizado no planejamento de tratamento radioterápico. No entanto, a sua eciência pode ser melhorada para aplicações clínicas de rotina. Nesta dissertação é apresentado o código CUBMC, um código de Monte Carlo que simula o transporte de fótons para cálculo de dose, desenvolvido na plataforma CUDA (Compute Unified Device Architecture). A simulação de eventos físicos é baseada no algoritmo presente no código PENELOPE, e as tabelas de seção de choque utilizadas são geradas pela rotina MATERIAL, também presente no código PENELOPE. Os fótons são transportados em objetos simuladores descritos por voxels. Existem duas abordagens distintas utilizadas para a simulação. A primeira delas obriga o fóton a realizar uma parada toda vez que cruza a fronteira de um voxel, a segunda e pelo Método de Woodcock, onde o fóton ignora a existência de fronteiras e é transportado em um meio homogêneo fictício. O código CUBMC tem como objetivo ser uma opção de código simulador que, ao utilizar a capacidade de processamento paralelo de unidades de processamento gráfico (GPU), apresente alto desempenho em máquinas compactas e de baixo custo, podendo assim ser aplicado em casos clínicos e incorporado a sistemas de planejamento de tratamento em radioterapia. / As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this master thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious medium. The CUBMC code aims to be an alternative for Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provides high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy.
13

Qualification du calcul de l'échauffement photonique dans les réacteurs nucléaires / Gamma heating qualification in nuclear reactors

Ravaux, Simon 25 March 2013 (has links)
Ce travail de thèse répond à un besoin de qualification des outils permettant de calculer les échauffements photoniques dans les réacteurs nucléaires. En effet, la problématique des échauffements g dans les matériaux de structure a pris de l’importance ces dernières années, notamment pour la sûreté des réacteurs de 3ème génération dans lesquels un réflecteur lourd en acier est introduit.Les photons présents dans le coeur sont tous directement ou indirectement issus des interactions des neutrons avec la matière. Ils sont créés au moment de l’interaction ou en différé par l’intermédiaire de noyaux créés au moment de l’interaction. Par conséquent, le premier axe de travail a été d’effectuer une analyse critique des données de production photonique dans les bibliothèques de données nucléaires standards. La découverte d’omissions dans la bibliothèque JEFF-3.1.1 nous a amené à proposer une méthode de production de nouvelles évaluations contenant de nouveaux spectres d’émission de photong. Ces nouvelles évaluations ont ensuite été proposées et en partie acceptées pour la nouvelle version de la bibliothèque JEFF.Il existe deux codes de transport de particules développés au CEA : TRIPOLI4 etAPOLLO2. Le deuxième axe de travail a été de qualifier ces deux codes. Pour cela, nous avons interprété les mesures d’échauffement g effectuées dans le cadre du programme expérimental PERLE. Des détecteurs thermoluminescents (TLD) ont été introduits dans un réflecteur lourd en acier entourant un réseau de crayons combustibles. Nous avons dû proposer un schéma de calcul spécifique aux deux codes afin de calculer la réponse des TLD.Les comparaisons calcul-mesure ont montré que TRIPOLI4 permettait decorrectement estimer l’échauffement dans le réflecteur relativement à l’échauffement dans lazone fissile. En effet, les écarts calcul-mesure sont inférieurs à l’incertitude expérimentale à1s. Pour le calcul APOLLO2, nous avons tout d’abord commencé par une phase de validation par rapport à TRIPOLI4 afin d’estimer les biais liés aux approximations imposées par le traitement déterministe du transport des particules. Après cette phase de validation,nous avons pu montrer qu’APOLLO2, comme TRIPOLI4, permettait d’estimer correctement l’échauffement dans le réflecteur avec des écarts calcul-mesure comparables à l’incertitude expérimentale. / During the last few years, the g-heating issue has gained in stature, mainly for thesafety of the 3rd-generation reactors in which a stainless steel reflector is inserted. Thepurpose of this work is the qualification of the needed tools for calculation of the g-heating inthe nuclear reactors.In a nuclear reactor, all the photons are directly or indirectly produced by the neutronmatterinteractions. Thus, the first phase of this work is a critical analysis of the photonproduction data in the standard nuclear data library. New evaluations have been proposed tothe next version of the JEFF library after that some omissions have been found. They havepartly been accepted for JEFF-3.2.Two particle-transport codes are currently developed in the CEA: the deterministiccode APOLLO2 and the Monte Carlo code TRIPOLI4. The second part of this work is thequalification of both these codes by interpreting an integral experiment called PERLE. Theexperimental set-up is made by a LWR pin assembly surrounded by a stainless steelreflector in which the g heating is measured by Thermo-luminescent Detector (TLD). Acalculation scheme has been proposed for both APOLLO2 and TRIPOLI4 in order tocalculate the TLD’s responses.Comparisons between calculations and measurements have shown that TRIPOLI4gives a satisfactory estimation of the g heating in the reflector. These discrepancies arewithin the experimental 1s uncertainty. Before the qualification, APOLLO2 has beenpreviously validated against TRIPOLI4 reference calculation. This validation gives anestimation of the bias due to the deterministic approximations of the transport equationresolution. The qualification has shown that the discrepancies between APOLLO2predictions and TLD’s measurements are in the same range as experimental uncertainties.
14

Desenvolvimento de um software de Monte Carlo para transporte de fótons em estruturas de voxels usando unidades de processamento gráfico / Development of a GPU Monte Carlo software for photon transport in voxel structures

Murillo Bellezzo 26 June 2014 (has links)
Sendo o método mais preciso para estimar a dose absorvida em radioterapia, o Método de Monte Carlo (MMC) tem sido amplamente utilizado no planejamento de tratamento radioterápico. No entanto, a sua eciência pode ser melhorada para aplicações clínicas de rotina. Nesta dissertação é apresentado o código CUBMC, um código de Monte Carlo que simula o transporte de fótons para cálculo de dose, desenvolvido na plataforma CUDA (Compute Unified Device Architecture). A simulação de eventos físicos é baseada no algoritmo presente no código PENELOPE, e as tabelas de seção de choque utilizadas são geradas pela rotina MATERIAL, também presente no código PENELOPE. Os fótons são transportados em objetos simuladores descritos por voxels. Existem duas abordagens distintas utilizadas para a simulação. A primeira delas obriga o fóton a realizar uma parada toda vez que cruza a fronteira de um voxel, a segunda e pelo Método de Woodcock, onde o fóton ignora a existência de fronteiras e é transportado em um meio homogêneo fictício. O código CUBMC tem como objetivo ser uma opção de código simulador que, ao utilizar a capacidade de processamento paralelo de unidades de processamento gráfico (GPU), apresente alto desempenho em máquinas compactas e de baixo custo, podendo assim ser aplicado em casos clínicos e incorporado a sistemas de planejamento de tratamento em radioterapia. / As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this master thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious medium. The CUBMC code aims to be an alternative for Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provides high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy.
15

Phononic band gap micro/nano-mechanical structures for wireless communications and sensing applications

Mohammadi, Saeed 18 May 2010 (has links)
Because of their outstanding characteristics, micro/nano-mechanical (MM) structures have found a plethora of applications in wireless communications and sensing. Many of these MM structures utilize mechanical vibrations (or phonons) at megahertz or gigahertz frequencies for their operation. On the other hand, the periodic atomic structure of crystals is the fundamental phenomenon behind the new era of electronics technology. Such atomic arrangements lead to a periodic electric potential that modifies the propagation of electrons in the crystals. In some crystals, e.g. silicon (Si), this modification leads to an electronic band gap (EBG), which is a range of energies electrons can not propagate with. Discovering EBGs has made a revolution in the electronics and through that, other fields of technology and the society. Inspired by these trends of science and technology, I have designed and developed integrated MM periodic structures that support large phononic band gaps (PnBGs), which are ranges of frequencies that phonons (and elastic waves) are not allowed to propagate. Although PnBGs may be found in natural crystals due to their periodic atomic structures, such PnBGs occur at extra high frequencies (i.e., terahertz range) and cannot be easily engineered with the current state of technology. Contrarily, the structures I have developed in this research are made on planar substrates using lithography and plasma etching, and can be deliberately engineered for the required applications. Although the results and concepts developed in this research can be applied to other substrates, I have chosen silicon (Si) as the substrate of choice for implementing the PnBG structure due to its unique properties. I have also designed and implemented the fundamental building blocks of MM systems (e.g., resonators and waveguides) based on the developed PnBG structures and have shown that low loss and efficient MM devices can be made using the PnBG structures. As an example of the possible applications of these PnBG structures, I have shown that an important source of loss, the support loss, can be suppressed in MM resonators using PnBG structures. I have also made improvements in the characteristics of the developed MM PnBG resonators by developing and employing PnBG waveguides. I have further shown theoretically, that photonic band gaps (PtBGs) can also be simultaneously obtained in the developed PnBGs structures. This can lead to improved photon-phonon interactions due to the effective confinement of optical and mechanical vibrations in such structures. For the design, fabrication, and characterization of the structures, I have developed and utilized complex and efficient simulation tools, including a finite difference time domain (FDTD), a plane wave expansion (PWE), and a finite elements (FE) tool, each of which I have developed either completely from scratch, or by modification of an existing tool to suit my applications. I have also developed and used advanced micro-fabrication recipes, and characterization methods for realizing and characterizing these PnBG structures and devices. It is agued that by using the same ideas these structures can be fabricated at nanometer scales to operate at ultra high frequency ranges. I believe my contributions has opened a broad venue for new MM structures based on PnBG structures with superior characteristics compared to the conventional devices.
16

Coupled multi-group neutron photon transport for the simulation of high-resolution gamma-ray spectroscopy applications

Burns, Kimberly Ann 02 July 2009 (has links)
The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. In these applications, high-resolution gamma-ray spectrometers are used to preserve as much information as possible about the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used modeling tool for this type of problem, but computational times for many problems can be prohibitive. This work explored the use of coupled Monte Carlo-deterministic methods for the simulation of neutron-induced photons for high-resolution gamma-ray spectroscopy applications. A method was developed for the implementation of coupled neutron-photon problems into RAdiation Detection Scenario Analysis Toolbox (RADSAT), a computer code that couples the complementary strengths of discrete-ordinate and Monte Carlo approaches to obtain high-resolution detector responses. Central to this work was the development of a method for generating multi-group neutron-photon cross-sections in a way that separates the discrete and continuum photon emissions so that the key signatures in neutron activation analysis (i.e., the characteristic line energies) are preserved. The mechanics of the cross-section preparation method are described and contrasted with standard neutron-gamma cross-section sets. These custom cross-sections were then applied to several benchmark problems using the method developed in this work. Multi-group results for neutron and photon flux are compared to MCNP results. Finally, calculated responses of high-resolution spectrometers were compared. The added computational efficiency of the coupled Monte Carlo-deterministic method and the positive agreement achieved in the code-to-code verification make the integration of the coupled neutron-photon method into RADSAT a promising endeavor.
17

Desenvolvimento de um software de Monte Carlo para transporte de fótons em estruturas de voxels usando unidades de processamento gráfico / Development of a GPU Monte Carlo software for photon transport in voxel structures

BELLEZZO, MURILLO 10 November 2014 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2014-11-10T10:59:52Z No. of bitstreams: 0 / Made available in DSpace on 2014-11-10T10:59:52Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
18

Desenvolvimento de um software de Monte Carlo para transporte de fótons em estruturas de voxels usando unidades de processamento gráfico / Development of a GPU Monte Carlo software for photon transport in voxel structures

BELLEZZO, MURILLO 10 November 2014 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2014-11-10T10:59:52Z No. of bitstreams: 0 / Made available in DSpace on 2014-11-10T10:59:52Z (GMT). No. of bitstreams: 0 / Sendo o método mais preciso para estimar a dose absorvida em radioterapia, o Método de Monte Carlo (MMC) tem sido amplamente utilizado no planejamento de tratamento radioterápico. No entanto, a sua eciência pode ser melhorada para aplicações clínicas de rotina. Nesta dissertação é apresentado o código CUBMC, um código de Monte Carlo que simula o transporte de fótons para cálculo de dose, desenvolvido na plataforma CUDA (Compute Unified Device Architecture). A simulação de eventos físicos é baseada no algoritmo presente no código PENELOPE, e as tabelas de seção de choque utilizadas são geradas pela rotina MATERIAL, também presente no código PENELOPE. Os fótons são transportados em objetos simuladores descritos por voxels. Existem duas abordagens distintas utilizadas para a simulação. A primeira delas obriga o fóton a realizar uma parada toda vez que cruza a fronteira de um voxel, a segunda e pelo Método de Woodcock, onde o fóton ignora a existência de fronteiras e é transportado em um meio homogêneo fictício. O código CUBMC tem como objetivo ser uma opção de código simulador que, ao utilizar a capacidade de processamento paralelo de unidades de processamento gráfico (GPU), apresente alto desempenho em máquinas compactas e de baixo custo, podendo assim ser aplicado em casos clínicos e incorporado a sistemas de planejamento de tratamento em radioterapia. / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
19

Medidas de taxas de reacao nuclear e de indices espectrais ao longo do raio das pastilhas combustiveis do reator IPEN/MB-01 / Measurements of nuclear reaction rates and spectral indices along of the radius of fuel pellets at IPEN/MB-01 reactor

MURA, LUIS F.L. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:28:43Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:57:15Z (GMT). No. of bitstreams: 0 / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
20

Medidas de taxas de reacao nuclear e de indices espectrais ao longo do raio das pastilhas combustiveis do reator IPEN/MB-01 / Measurements of nuclear reaction rates and spectral indices along of the radius of fuel pellets at IPEN/MB-01 reactor

MURA, LUIS F.L. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:28:43Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:57:15Z (GMT). No. of bitstreams: 0 / Este trabalho apresenta as medidas das taxas de reação nuclear ao longo da direção radial da pastilha combustível por irradiação e posterior espectrometria gama de um fino disco de UO2 com enriquecimento de 4,3% no reator IPEN/MB- 01. A partir de sua irradiação, a taxa de captura radioativa e de fissão foram medidas em função do raio do disco utilizando um detector HPGe. Colimadores de chumbo foram utilizados para esse fim. O disco de UO2 é inserido no interior de uma vareta combustível desmontável e esta é então colocada na posição central do núcleo do reator IPEN/MB-01 e irradiada durante uma hora sob um fluxo de nêutrons de aproximadamente 9 x 108 n/cm2s. Na espectrometria gama, 10 colimadores com diâmetros diferentes foram utilizados, consequentemente, as reações nucleares de captura radioativa que ocorrem nos átomos de 238U e as fissões que ocorrem em ambos 235U e 238U são mensuradas em função de 10 regiões distintas do disco combustível. Correções de eficiência geométrica devido à introdução dos colimadores no sistema de detecção HPGe foram estimados usando o código MCNP-4C. Alguns valores calculados da taxa de reação nuclear de captura radioativa e fissão obtidos pela metodologia de Monte Carlo, utilizando o código MCNP-4C, são apresentados e comparados aos dados experimentais apresentando boa concordância. Além de taxas de reação nuclear, os índices espectrais 28ρ e 25δ foram obtidos para cada raio do disco combustível. / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP

Page generated in 0.0895 seconds