• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Iridescence and circular dichroism in cellulose nanocrystal thin films

Hewson, Daniel James January 2017 (has links)
Only in recent times has the true potential of cellulose as a high-end functional and sustainable material been realised. As the world’s most abundant resource cellulose has been utilised by man throughout history for timber, paper and yarns. It is found in every plant as a hierarchical material and can be extracted and converted into fibres which are of great use, especially in the form of nanofibrous materials. This thesis has focused on the utilisation and ability of cellulose nanocrystals (CNCs) to generate structural colour in fabricated thin films. This has been achieved in two ways: Firstly, the natural morphology of CNCs and their ability to form a suspension have been applied to a layer-by-layer (LbL) regime to produce tunable Bragg reflecting thin films. Secondly, a novel technique combining profilometry and spectroscopy has been developed to estimate the distribution of CNCs within EISA thin films and correlate this with the optical properties of the film. This thesis reports the successful fabrication of synthetic CNC LbL Bragg reflecting thin films. The film was compiled using an additive layer-by-layer technique which allowed the construction of a multi-layered thin film and control over individual layer thicknesses and refractive index. Also reported is the discovered reflection of both left and right handed circularly polarised light (CPL) from CNC EISA thin films. These reflections were found to correlate with CNC distribution within the thin films. The distribution of CNCs was estimated using a novel technique which combined spectroscopically measured film absorbance as a function of the volume of the film area under investigation. The specific volumes were calculated using profilometry measurements and the beam spot size used in the spectroscopy measurements.
2

Broadband Coherent Perfect Absorption in One-Dimensional Optical Systems

Villinger, Massimo Maximilian 01 January 2015 (has links)
Absorption plays a critical role in a variety of optical applications – sometimes it is desirable to minimize it as in optical fibers and waveguides, or to enhance it as in solar cells and photodetectors. We describe here a new optical scheme that controllably produces high optical absorption over a broad wavelength range (hundreds of nm) in systems that have low intrinsic absorption over the same range. This effect, 'coherent perfect absorption' or CPA, arises from a subtle interplay between interference and absorption of two beams incident on a weakly absorbing medium. In the first part of this study, we present an analytical model that captures the relevant physics of CPA in one-dimensional photonic structures. This model elucidates an absorption-mediated interference effect that underlies CPA – an effect that is normally forbidden in Hermitian systems, but is allowed when conservation of energy is violated due to the inclusion of loss. As a concrete example, we consider a Fabry-Pérot resonator containing a lossy dielectric and confirm this model through a computational study of a 1-micron-thick silicon layer in a cavity formed of dispersive mirrors with aperiodic multilayer design. We confirm that one may achieve 100% absorption in this thin silicon layer (whose intrinsic absorption is only ~ 3%) in the near-infrared. We then design two device models using few-micron-thick aperiodic planar dielectric mirrors and demonstrate (computationally, as well as experimentally) spectrally flat, coherently enhanced absorption at the theoretical limit in a 2-micron-thick film of polycrystalline silicon embedded in symmetric and asymmetric cavities. This coherent effect is observed over an octave-spanning wavelength range of ~800 – 1600 nm utilizing incoherent light in the near-infrared, exploiting mirrors that have wavelength-dependent reflectivity devised to counterbalance the decline in silicon's intrinsic absorption at long wavelengths. We anticipate that the design principles established here may be extended to other materials, broader spectral ranges, and large surface areas. Finally, we study the effect of the angle of incidence on CPA in planar structures. The results of this study point to a path for realizing CPA in such systems continuously over large bandwidths.
3

COLOR PRODUCTION MECHANISMS IN SPIDERS AND THEIR BIOMIMICRY POTENTIAL

Hsiung, Bor-Kai January 2017 (has links)
No description available.

Page generated in 0.0819 seconds