• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ASSESSMENT OF PHOTONIC SWITCHES AS FUTURE REPLACEMENT FOR ELECTRONIC CROSS-CONNECT SWITCHES

Youssef, Ahmed H. 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / This paper presents the future of optical networking via photonic switches as a potential replacement for the existing electronic cross-connects. Although optical amplifiers are now mainstream and wave division multiplexing (WDM) systems are a commercial reality, the industry’s long-term vision is one of the all-optical network. This will require optical switching equipment such as all-optical or “photonic” cross-connect switches that will provide packet switching at an optical layer. Currently, as voice calls or data traffic are routed throughout Range and commercial networks, the information can travel through many fiber-optic segments which are linked together using electronic cross-connects. However, this electronic portion of the network is the bottleneck that is preventing the ideal network from achieving optimal speeds. Information is converted from light into an electronic signal, routed to the next circuit pathway, then converted back into light as it travels to the next network destination. In an all-optical network, the electronics are removed from the equation, eliminating the need to convert the signals and thereby significantly improving network performance and throughput. Removing the electronics improves network reliability and restoration speeds in the event of an outage, provides greater flexibility in network provisioning, and provides a smooth transition when migrating to future optical transmission technologies. Despite the fact that photonic switching remains uncommercialized, it now seems apparent that the core switches in both the public networks and DoD Range networks of the early 21st century will probably carry ATM cells over a photonic switching fabric.
2

Integrated Inp Photonic Switches

May-Arrioja, Daniel 01 January 2006 (has links)
Photonic switches are becoming key components in advanced optical networks because of the large variety of applications that they can perform. One of the key advantages of photonic switches is that they redirect or convert light without having to make any optical to electronic conversions and vice versa, thus allowing networking functions to be lowered into the optical layer. InP-based switches are particularly attractive because of their small size, low electrical power consumption, and compatibility with integration of laser sources, photo-detectors, and electronic components. In this dissertation the development of integrated InP photonic switches using an area-selective zinc diffusion process has been investigated. The zinc diffusion process is implemented using a semi-sealed open-tube diffusion technique. The process has proven to be highly controllable and reproducible by carefully monitoring of the diffusion parameters. Using this technique, isolated p-n junctions exhibiting good I-V characteristics and breakdown voltages greater than 10 V can be selectively defined across a semiconductor wafer. A series of Mach-Zehnder interferometric (MZI) switches/modulators have been designed and fabricated. Monolithic integration of 1x2 and 2x2 MZI switches has been demonstrated. The diffusion process circumvents the need for isolation trenches, and hence optical losses can be significantly reduced. An efficient optical beam steering device based on InGaAsP multiple quantum wells is also demonstrated. The degree of lateral current spreading is easily regulated by controlling the zinc depth, allowing optimization of the injected currents. Beam steering over a 21 microns lateral distance with electrical current values as low as 12.5 mA are demonstrated. Using this principle, a reconfigurable 1x3 switch has been implemented with crosstalk levels better than -17 dB over a 50 nm wavelength range. At these low electrical current levels, uncooled and d.c. bias operation is made feasible. The use of multimode interference (MMI) structures as active devices have also been investigated. These devices operate by selective refractive index perturbation on very specific areas within the MMI structure, and this is again realized using zinc diffusion. Several variants such as a compact MMI modulator that is as short as 350 µm, a robust 2x2 photonic switch and a tunable MMI coupler have been demonstrated.

Page generated in 0.1476 seconds