• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photosynthetic Thermal Tolerance and Recovery to Short Duration Temperature Stress in Desert and Montane Plants: A Comparative Study

Gallagher, David William 01 June 2014 (has links) (PDF)
Climate change models predict an increase in frequency and amplitude of extreme weather events, including heat waves. To better predict how the composition and distribution of plant assemblages might respond to these changes in temperature, it is important to understand how species currently respond to these extremes. Photosynthetic thermal tolerance (T25)and photosynthetic recovery (RT25) were quantified in 27 species. We also studied the relationships between T25, RT25 and leaf mass per area (LMA). Leaf temperature was also monitored in the field. Leaves used in this study were collected from two distinct environments representing desert and montane plant assemblages. T25 and RT25 were measured using a chlorophyll fluorescence protocol incorporating sub-saturating light and short duration heat stress. Mean T25and LMA were significantly different between environments. Mean RT25 was not significantly different between environments. There was a positive relationship between T25 and LMA in both environments. The ability to recover from heat stress does not differ between two biomes that experience vastly different mean maximum temperatures during the summer months. LMA is a predictive leaf trait for thermal tolerance.

Page generated in 0.0808 seconds