• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 20
  • 12
  • 8
  • 6
  • 3
  • 1
  • Tagged with
  • 128
  • 28
  • 25
  • 23
  • 21
  • 21
  • 20
  • 18
  • 18
  • 17
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Ultrasound and photoacoustic imaging to guide and monitor photothermal therapy

Shah, Jignesh Mukesh, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
62

Récepteur solaire photo-thermique obtenu par électrophorèse de nanoparticules à propriété optique sélective / Electrophoretic deposition of nanoparticles for controlled optical properties‏

Shehayeb, Sanaa 30 November 2017 (has links)
La production d'eau chaude via des capteurs solaires photothermiques est une technique en expansion qui permettra de limiter l'utilisation des sources conventionnelles d’énergie (combustibles fossiles, nucléaire…). Le cuivre noir (CuO) s’avère être un matériau possédant des propriétés optiques sélectives intéressantes pour cette application. Ainsi, son utilisation au sein d’un absorbeur sous forme d’un matériau « tandem » est une solution envisagée. Le défi que nous avons tenté de relever au cours de ce travail, a été de réaliser ce type de matériau par dépôt électrophorétique (EPD) de nanoparticules de CuO déposé sur un substrat métallique de type wafer de silicium recouvert de platine ou d’or. Ce substrat « modèle » a été utilisé dans un premier temps, car il facilite la mise en œuvre de techniques de caractérisation telles que l’analyse par diffraction X en incidence rasante (GIXRD) ou l’analyse en coupe par microscopie électronique à balayage. Pour ce faire, la stabilisation de la suspension colloïdale de CuO, qui est une condition sine qua non pour la réalisation d’un dépôt électrophorétique, a été étudiée dans un solvant organique tel que l'isopropanol par ajout de Mg(NO3)2, ainsi que dans l’eau en utilisant du polyethylenimine comme dispersant. Ces deux adjuvants agissent comme des agents stabilisants et apportent aux nanoparticules une charge positive ce qui permet la réalisation d'un EPD cathodique. Afin d’optimiser la formulation des suspensions, la stabilité colloïdale en fonction de la teneur en stabilisant a été étudiée avant tout dépôt, par diffusion dynamique de la lumière (DLS) couplée à la vélocimétrie laser à effet Doppler.Différents revêtements contenant du CuO ont été obtenus en faisant varier les paramètres classiques de l’EPD (temps de dépôt, champ électrique, concentration en nanoparticules) pour pouvoir contrôler l'épaisseur finale et la morphologie. Par conséquent, la sélectivité optique et le rendement du tandem résultants peuvent être optimisés en jouant sur l’ensemble de ces paramètres. Des dépôts homogènes ont été obtenus pour [CuO] =5x10-4 g/cm3 pour les deux milieux. Les meilleures conditions sont 50 V.cm-1// 30mn pour la suspension d'IPA et 2 V.cm-1 // 120 mn pour la suspension en milieu aqueux. La composition et l'épaisseur des dépôts sont analysées par GIXRD, et par microscopie électronique (SEM-EDS). Pour les conditions optimisées, les matériaux tandem obtenus à partir de la suspension d'IPA+CuO possèdent une densité de 1.69 g/cm3 avec une grande rugosité. Au contraire, des surfaces homogènes et régulières sont obtenues en milieu aqueux et les dépôts présentent une densité beaucoup plus élevée d’environ 5.7 g/cm3.L’absorptance (α) et l’émittance (ԑ) ont été calculées à partir des spectres de réflectance de l'UV-VIS-NIR et de l’Infrarouge lointain, respectivement. L'efficacité (ƞ) du revêtement tandem obtenu en milieu aqueux est comprise entre 0.8-0.87 tandis qu’elle est seulement de 0.7 dans l’IPA. De plus, la faisabilité de l’EPD sur d’autres substrats métalliques plus conventionnels en vue d’une application (acier, aluminium, cuivre) a été explorée. L'efficacité des dépôts a pu être améliorée par des post-traitements de deux types. D’une part, en pyrolysant à 400°C sous atmosphère inerte le polymère (PEI) incorporé dans le revêtement. Le carbone résiduel obtenu à l’issue de cette pyrolyse a permis d’augmenter l’absorbance. D’autre part, en déposant sur la surface des revêtements une couche de nanoparticules de SiO2 qui joue le rôle de couche anti-réflexion et permet également de protéger la surface. Les deux voies ont été réalisées avec succès et le rendement le plus élevé obtenu pour ces revêtements est de 0.9. / The production of hot water by using efficient photothermal solar collectors is growing in importance to limit the use of fossil fuels. Black copper (CuO) has proved to be one of the viable solar-selective coatings owing to its nearly intrinsic properties. The formation of a tandem absorber based on CuO thin film deposited onto a highly IR reflecting metallic substrate is processed by electrophoretic deposition (EPD).In this way, the stabilization of a CuO colloidal suspension is studied previously by adding Mg(NO3)2 in isopropanol (IPA) or polyethylenimine (PEI) in water suspension. Both acts as positively charging agents and allow the realisation of a cathodic EPD. The colloidal stability as a function of the stabilizing agent content is studied prior to EPD, by dynamic light scattering (DLS) coupled with laser doppler velocimetry.CuO tandem absorbers are obtained by varying different EPD parameters to control the final thickness and also the morphology. Consequently, the optical selectivity of the tandem material is tuned and optimized. The deposition yield is compared relative to the different applied voltage range, deposition time and nanoparticle concentrations. Homogeneous deposits are obtained for [CuO]=5x10-4 g/cm3 from both suspensions. The optimum applied voltage is found to be 50 V.cm-1 for IPA suspension and 2 V.cm-1 for H2O suspension, for deposition times of 30 mins and 120 mins, respectively. The composition and the thickness of the coatings are analysed by Grazing Incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM) and the density is obtained from energy-dispersive X-ray spectroscopy (EDX). For the previously mentioned optimized conditions, CuO tandem absorbers derived from IPA suspension possess a density of 1.69 g/cm3 with high surface roughness. In contrast, homogeneous and regular surfaces is obtained from water suspensions having a higher density of 5.7 g/cm3.Moreover, absorptance (α) and emittance (ԑ) are calculated from the reflectance spectra of the UV-Vis-NIR and the Fourier transform InfraRed (FTIR) spectroscopy, respectively. α and ԑ were combined to determine the efficiency (ƞ) of the tandem material. Tandems obtained from water suspension has ƞ=0.8 -0.87 while from IPA ƞ=0.7. Besides, the applicability of this EPD is checked by performing other deposit of CuO on metallic substrates of different types.CuO tandems obtained from water suspensions are clearly more prominent to be used as solar selective tandem absorbers due to the high calculated ƞ value reported. The efficiency of such selective tandem absorbers was further enhanced by carbonization (pyrolysis under inert atmosphere) of the polymer (PEI) embedded in the coating. Otherwise, a thin film of SiO2 nanoparticles was deposited at the surface of the selective tandem absorbers to protect them. Both routes were successfully processed and proved to raise ƞ to 0.9.
63

Pyrométrie et caractérisation thermophysique par radiométrie photothermique non linéaire / Nonlinear Photothermal Radiometry and its applications to pyrometry and thermal property measurements

Fleming, Austin 19 May 2017 (has links)
La radiométrie photothermique (PTR) est une technique standard qui mesure les propriétés thermiques en mesurant la réponse thermique d’un matériau à un échauffement optique. Le travail présenté ici développe la théorie PTR en prenant en compte la dépendance non linéaire des émissions thermiques par rapport à la température. Cette théorie PTR est explorée numériquement et expérimentalement dans ce travail en utilisant la dépendance non linéaire du rayonnement thermique en fonction de la température. Une technique de mesure de l'effusivité thermique et deux nouvelles techniques de pyrométrie sont développées et testées expérimentalement. La première technique de pyrométrie permet une mesure précise de l’augmentation de température lors d'une mesure PTR traditionnelle. Cela a de nombreuses applications lorsque l'échantillon est sensible à l’augmentation de température et peut être endommagé en raison d’une surchauffe. La deuxième technique de pyrométrie ne nécessite pas que l’émissivité soit connue, mesurée ou d’être basée sur l’hypothèse d’un corps gris. Cependant la mesure peut être fortement influencée par une erreur sur la bande passante des filtres optiques utilisés et elle est très sensible à toute non-linéarité dans le système de détection. À partir des résultats expérimentaux, des directives de conception sont fournies pour minimiser ces deux inconvénients. La troisième méthode développée permet une mesure directe et sans contact de l'effusivité thermique d'un matériau homogène. Ce type de mesure n'a encore jamais été réalisé avec d'autres techniques. Les résultats expérimentaux d'effusivité de cette technique montrent un excellent accord avec les valeurs de la littérature. / Photothermal radiometry (PTR) is a standard technique which measures thermal properties by measuring a materials thermal response due to optical heating. PTR measures the emitted thermal radiation from a sample to determine the thermal response. The work presented here further develops the PTR theory by including the nonlinear dependence of thermal emission with respect to temperature. This more advanced PTR theory is numerically and experimentally explored in this work. A thermal effusivity measurement technique and two new pyrometry techniques are developed and experimentally tested using the nonlinear dependence in the PTR theory. The first pyrometry technique allows for accurate temperature measurement during a traditional PTR measurement. This has many applications when the sample is sensitive to an increase in temperature and possibly damaged due to overheating. The second pyrometry technique does not require emissivity to be known, measured, or rely on a gray body assumption. The measurement can be influenced greatly by any error in the bandwidth of optical filters used in the measurement, and it is very sensitive to any nonlinearity in the detection system. From the experimental results, design guidelines are provided to minimize these two drawbacks of the technique for future exploration. The direct thermal effusivity measurement developed allows for a non-contact, direct measurement of thermal effusivity of a homogenous material. This type of measurement has not been achieved with any other technique. The experimental effusivity results from this technique show excellent agreement with literature values.
64

Contribuições as técnicas de espectroscopias fototérmicas e aplicações a materiais poliméricos / Contributions for photothermal spectroscopic techniques and applications to polymer materials

Washington Luiz de Barros Melo 02 December 1992 (has links)
A espectroscopia foto-térmica tem sido largamente usada na investigação de propriedades térmicas e ópticas de materiais sólidos. Neste trabalho, desenvolvemos novas câmaras foto-térmicas as quais foram adaptadas para os estudos de materiais poliméricos. Estendemos o modelo desenvolvido por Mandelis para a espectroscopia fotopiroelétrica (PPES), incluindo nele um termo devido à reflexão de luz na interface amostra-detetor. A aplicação da técnica PPES em filmes de Poli(3-Butiltiofeno) não dopado nos permitiu obter sua condutividade e difusividade térmicas, como também seu gap de energia. Também aplicamos a técnica fotoacústica, com um flash de laser He-Ne, ao estudo de filmes de polímeros transparentes. Finalmente, desenvolvemos um método semi-empírico o qual significa a análise do sinal foto-térmico, quando ele é, principalmente, devido à difusão térmica. / Photothermal spectroscopies have been largely used in the investigation of thermal and optical properties of solids materials. In this work we developed new photothermal cells which were adapted for the study of polymerics materials. We also extended the model developed by Mandelis for the Photopyroeletric Spectroscopy (PPES), including in it a term due to the reflected light in the sample-detector interface. The application of the PPES technique in films of undopedpoly(3-butylthiophene) allowed us to obtain its thermal conductivity and diffusivity, as well as its gap energy. We also applied the photoacoustic technique, with a flash of He-Ne laser to study of transparent films of polymers. Finally we developed a semi-empiric method which simplifies the analysis of the photothermal signal, when it is mainly due to the thermal diffusion.
65

Theranostic nanomaterials applied to the cancer diagnostic and therapy and nanotoxicity studies / Nanomateriais Teranósticos Aplicados à Problemática do Câncer e Estudos de Nanotoxicidade.

Valeria Spolon Marangoni 29 June 2016 (has links)
Multifunctional plasmonic nanoparticles have shown extraordinary potential for near infrared photothermal and triggered-therapeutic release treatments of solid tumors. However, the accumulation rate of the nanoparticles in the target tissue, which depends on their capacity to escape the immune system, and the ability to efficiently and accurately track these particles in vivo are still limited. To address these challenges, we have created two different systems. The first one is a multifunctional nanocarrier in which PEG-coated gold nanorods were grouped into natural cell membrane vesicles from lung cancer cell membranes (A549) and loaded with β-lap (CM-β-lap-PEG-AuNRs). Our goal was to develop specific multifunctional systems for cancer treatment by using the antigens and the unique properties of the cancer cell membrane combined with photothermal properties of AuNRs and anticancer activity of β-lap. The results confirmed the assembly of PEG-AuNRs inside the vesicles and the irradiation with NIR laser led to disruption of the vesicles and release of the PEG-AuNRs and β-Lap. In vitro studies revealed an enhanced and synergic cytotoxicity against A549 cancer cells, which can be attributed to the specific cytotoxicity of β-Lap combined with heat generated by laser irradiation of the AuNRs. No cytotoxicity was observed in absence of laser irradiation. In the second system, MRI-active Au nanomatryoshkas were developed. These are Au core-silica layer-Au shell nanoparticles, where Gd(III) ions are encapsulated within the silica layer between the inner core and outer Au layer of the nanoparticle (Gd-NM). This theranostic nanoparticle retains its strong near infrared optical absorption properties, essential for in vivo photothermal cancer therapy, while simultaneously providing increased T1 contrast in MR imaging by concentrating Gd(III) within the nanoparticle. Measurements of Gd-NM revealed a substantially enhanced T1 relaxivity (r1 ~ 17 mM-1 s-1) even at 4.7 T, surpassing conventional Gd(III)-DOTA chelating agents (r1 ~ 4 mM-1 s-1) currently in clinical use. The observed relaxivities are consistent with Solomon-Bloembergen-Morgan (SBM) theory, describing the longer-range interactions between the Gd(III) and protons outside the nanoparticle. These novel multifunctional systems open the door for the development of more efficient nanoplatforms for diagnosis and treatment of cancer. / Nanopartículas plasmônicas multifuncionais têm revelado elevado potencial para fototermia na região (NIR) do infravermelho e liberação controlada de fármacos para o tratamento de tumores sólidos. No entanto, a taxa de acumulação das nanoparticulas no tecido alvo, que depende da capacidade delas de escapar do sistema imunológico, e a habilidade de rastrear de maneira efetiva essas partículas in vivo ainda são limitadas. Para superar essas barreiras, dois sistemas diferentes foram desenvolvidos. O primeiro corresponde a um nanocarreador multifunctional, onde nanobastões de ouro funcionalizados com PEG foram agrupados dentro de vesículas de membranas de células naturais originarias de células cancerígenas de pulmão (A549) conjugadas com β-Lap (CM-β-lap-PEG-AuNRs). Nosso principal objetivo foi desenvolver um sistema multifuncional especifico para tratamento de câncer utilizando os antígenos e propriedades únicas da membrana das células cancerígenas combinados com as propriedades fototérmicas dos AuNRs e a atividade anticancerígena da β-Lap. Os resultados confirmaram o agrupamento dos PEG-AuNRs dentro das CM e irradiação com o laser no NIR levou ao rompimento das vesículas e liberação dos AuNRs e β-Lap. Estudos in vitro revelaram uma elevada e sinérgica citotoxicidade contra células A549, que pode ser atribuída a combinação da especifica toxicidade da β-Lap com o calor gerado pelos AuNRs por meio da irradiação com laser. Nenhuma citotoxicidade significativa foi observada na ausência de irradiação com laser. No segundo sistema, nanomatryoshkas de Au ativas em MRI foram desenvolvidas. Elas consistem em um núcleo de Au, uma camada intersticial de sílica, onde os íons de Gd(III) são encapsulados, e uma camada externa de Au (Gd-NM). Esta nanopartícula teranóstica mantém as propriedades de elevada absorção óptica no NIR, enquanto simultaneamente fornece um elevado contraste T1 em imagem por ressonância magnética por meio da concentração dos íons de Gd(III) dentro da nanoparticula. Medidas de Gd-NM revelaram uma relaxividade elevada (r1 ~ 17 mM-1 s-1 ) a 4,7 T, superando os convencionais agentes quelantes de Gd(III)-DOTA (r1 ~ 4 mM-1 s-1) utilizados clinicamente. As relaxividades observadas são consistentes com a teoria Solomon-Bloembergen-Morgan (SBM), descrevendo as interações de longo alcance entre Gd(III) e prótons de H fora da partícula. Os novos sistemas multifuncionais desenvolvidos abrem oportunidades para o desenvolvimento de nanoplataformas mais eficientes para o diagnóstico e tratamento de câncer.
66

Optimisation thermique de nanostructures plasmoniques : conception, modélisation et caractérisation / Thermal optimization of plasmonic nanostructures : conception, simulation and characterization

Lalisse, Adrien 03 March 2017 (has links)
Un des défis majeurs auquel la communauté de la nano-optique aura à répondre dans les années à venir sera de concentrer l'énergie lumineuse à l'échelle du nanomètre de façon à créer une nanosource optique ou thermique intense à même d'alimenter de futurs dispositifs. Les nanoparticules métalliques, supportant une résonance plasmon de surface, sont idéales pour de telles applications. Dans ce contexte, cette thèse a pour vocation d'apporter un élément de réponse aux problématiques d'optimisation thermique aux échelles nanométriques et de proposer une nouvelle technique de nanothermométrie. A l'aide de simulations numériques, nous avons pu mettre en évidence les propriétés de génération de chaleur des nitrures de titane et de zirconium, dépassant celle de l'or, qui en font alors des matériaux de choix pour concevoir et fabriquer des nanosources thermiques dans le visible. Nous avons également obtenu une morphologie de particules induisant un échauffement maximal pour une longueur d'onde donnée : une nanoétoile à trois branches. Nous avons ensuite fabriqué des nanostructures d'or par lithographie électronique afin de les caractériser par holographie photothermique. En utilisant les deux types d'informations accessibles avec cette technique, l'amplitude et la phase optique, nous nous sommes alors efforcés à quantifier l'élévation de température de nanobâtonnets d'or. L'holographie photothermique d'amplitude a permis d'obtenir des mesures de température semi-quantitatives et, la technique de phase, encore préliminaire, se révèle intéressante et innovante pour étudier les propriétés thermoplasmoniques de nanostructures plasmoniques. / Focusing light on the nanoscale in order to create intense optical or thermal nanosources is probably the main challenge facing the nano-optics community, in order to power up future devices. Metallic nanoparticles and their surface plasmon resonance are ideal optical or thermal nanosources.In this context, this thesis aims at providing a possible solution to the issues of thermal optimization at the nanoscale and nanothermometry.By carrying out numerical simulations, we were able to highlight the heat generation properties of titanium and zirconium nitrides, exceeding those of gold, which make them ideally suited in order to conceive and fabricate heat nanosources in the visible. We also managed to obtain a particle morphology inducing a maximum heating at a given wavelength : a three-branchs nanostar.We fabricated gold nanostructures by e-beam lithography in order to characterize them with photothermal holography. By exploiting the two kind of informations available with this far-field optical technique, the amplitude and the optical phase, we strove to quantify the temperature variations of gold nanorods. The photothermal holography setup based on amplitude delivered semi-quantitative temperature measurements, and the phase based-technique, still at a preliminary stage of developpement, proves to be a new and promising tool for the study of optical and thermal properties of plasmonic nanostructures.
67

Etude des champs de flux thermique sur les composants faisant face au plasma dans un tokamak à partir de mesures de température par thermographie infrarouge / Study of heat fluxes on plasma facing components in a tokamak from measurements of temperature by infrared thermography

Daviot, Ronan 19 May 2010 (has links)
La connaissance des champs de flux thermique sur les composants d’un tokamak estun élément important de la conception de ce type de machines. L’objectif de cette thèse est dedévelopper et mettre en œuvre une méthode de calcul de ces flux à partir des mesures detempérature par thermographie infrarouge. Ce travail repose sur trois objectifs qui concernentles tokamaks actuels et futurs (ITER) : mesurer un champ de température d'une paroiréfléchissante par pyrométrie photothermique (pré-étude), caractériser les propriétésthermiques des dépôts sur les surfaces des composants et développer un calcultridimensionnel et non-linéaire du flux.Une comparaison de différentes techniques de pyrométries monochromatique,bichromatique et photothermique est effectuée sur une expérience de laboratoire de mesure detempérature. Une sensibilité importante de la technique de pyrométrie photothermique auxgradients de température sur la zone observée a été mise en évidence.Les dépôts en surface des composants exposés au plasma, sans inertie thermique, sontmodélisés par des champs de résistance thermique équivalente transverse. Ce champ derésistance est déterminé, en tout point de mesure, par confrontation du champ de températurede paroi issu de la thermographie avec le résultat d’une simulation par un modèlemonodimensionnel linéaire du composant. Une information sur la répartition spatiale du dépôtà la surface d’un composant est alors obtenue.Un calcul tridimensionnel et non-linéaire du champ de flux pariétal sur un composantest développé, par une méthode d’éléments finis, à partir de maillages de composants issus deCAO. La sensibilité du flux calculé à la précision des mesures de températures est discutée.Cette méthode est appliquée à des campagnes de mesures de températurebidimensionnelles par thermographie infrarouge sur des composants du tokamak JET. Leschamps de flux sur les tuiles du divertor, la protection supérieure et les protections poloïdalesinternes et externes sont déterminés et étudiés dans les deux directions, poloïdale ettoroïdale, du tokamak. La symétrie toroïdale du flux, d’une tuile à l’autre, est établie.L’influence de la résolution spatiale des mesures sur les flux calculés est discutée, à partir decomparaisons de résultats obtenus à partir de deux systèmes de thermographie de résolutionsdifférentes. / Knowing the fields of heat fluxes on the components of a tokamak is a key element todesign these devices. The goal of this thesis is the development of a method of computation ofthose heat loads from measurements of temperature by infrared thermography. The researchwas conducted on three issues arising in current tokamaks but also future ones like ITER: themeasurement of temperature on reflecting walls, the determination of thermal properties fordeposits observed on the surface of tokamak’s components and the development of a threedimensional,non-linear computation of heat loads.A comparison of several means of pyrometry, monochromatic, bichromatic andphotothermal, is performed on an experiment of temperature measurement. We show that thismeasurement is sensitive to temperature gradients on the observed area.Layers resulting from carbon deposition by the plasma on the surface of componentsare modeled through a field of equivalent thermal resistance, without thermal inertia. Thefield of this resistance is determined, for each measurement points, from a comparison ofsurface temperature from infrared thermographs with the result of a simulation, which isbased on a mono-dimensional linear model of components. The spatial distribution of thedeposit on the component surface is obtained.Finally, a three-dimensional and non-linear computation of fields of heat fluxes, basedon a finite element method, is developed here. Exact geometries of the component, releasedfrom CAD’s design, are used. The sensitivity of the computed heat fluxes is discussedregarding the accuracy of the temperature measurements.This computation is applied to two-dimensional temperature measurements of the JETtokamak. Several components of this tokamak are modeled, such as tiles of the divertor, upperlimiter and inner and outer poloïdal limiters. The distribution of heat fluxes on the surface ofthese components is computed and studied along the two main tokamak’s directions, poloidaland toroidal. Toroidal symmetry of the heat loads from one tile to another is shown. Theinfluence of measurements spatial resolution on the calculated heat fluxes is discussed bycomparing results obtained from measurements of two systems of thermography.
68

Thermally Driven Technologies for Atmospheric Water Capture to Provide Decentralized Drinking Water

January 2020 (has links)
abstract: Limited access to clean water due to natural or municipal disasters, drought, or contaminated wells is driving demand for point-of-use and humanitarian drinking water technologies. Atmospheric water capture (AWC) can provide water off the centralized grid by capturing water vapor in ambient air and condensing it to a liquid. The overarching goal of this dissertation was to define geographic and thermodynamic design boundary conditions for AWC and develop nanotechnology-enabled AWC technologies to produce clean drinking water. Widespread application of AWC is currently limited because water production, energy requirement, best technology, and water quality are not parameterized. I developed a geospatial climatic model for classical passive solar desiccant-driven AWC, where water vapor is adsorbed onto a desiccant bed at night, desorbed by solar heat during the day, and condensed. I concluded passive systems can capture 0.25–8 L/m2/day as a function of material properties and climate, and are limited because they only operate one adsorption-desorption-condensation cycle per day. I developed a thermodynamic model for large-scale AWC systems and concluded that the thermodynamic limit for energy to saturate and condense water vapor can vary up to 2-fold as a function of climate and mode of saturation. Thermodynamic and geospatial models indicate opportunity space to develop AWC technologies for arid regions where solar radiation is abundant. I synthesized photothermal desiccants by optimizing surface loading of carbon black nanoparticles on micron-sized silica gel desiccants (CB-SiO2). Surface temperature of CB-SiO2 increased to 60oC under solar radiation and water vapor desorption rate was 4-fold faster than bare silica. CB-SiO2 could operate >10 AWC cycles per day to produce 2.5 L/m2/day at 40% relative humidity, 3-fold more water than a conventional passive system. Models and bench-scale experiments were paired with pilot-scale experiments operating electrical desiccant and compressor dehumidifiers outdoors in a semi-arid climate to benchmark temporal water production, water quality and energy efficiency. Water quality varied temporally, e.g, dissolved organic carbon concentration was 3 – 12 mg/L in the summer and <1 mg/L in the winter. Collected water from desiccant systems met all Environmental Protection Agency standards, while compressor systems may require further purification for metals and turbidity. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2020
69

Cancer Therapy based on Core-Shell Iron-Iron Oxide Nanowires

Martinez Banderas, Aldo 11 1900 (has links)
Nanomaterials have been widely investigated for improving the treatment of diseases acting as vectors for diverse therapies and as diagnostic tools. Iron-based nanowires possess promising potential for biomedical applications due to their outstanding properties. The combination of different therapeutic and diagnostic strategies into one single platform is an approach for more efficient and safer treatments. In this thesis, I investigate the application of iron-iron oxide core-shell nanowires as therapeutic agents for cancer treatment. In particular, a novel method for multimodal cancer cell destruction was developed combining the optical, magneto-mechanical and chemotherapeutic properties of functionalized nanowires. By functionalizing the nanowires with doxorubicin through a pH-sensitive linker, the first treatment modality was achieved by selective intracellular drug release. The second treatment modality utilizes the mechanical disturbance exerted by the nanowires upon the application of a low-power alternating magnetic field. The third treatment modality exploits the capability of the nanowires to transform optical energy, absorbed from near-infrared irradiation, into heat. The efficiency of the three treatment modalities both independently and combined were tested in breast cancer cells with near complete cell death (90%). The combination of the different strategies can potentially reduce side effects and treatment time. Additionally, I studied the potential of these iron-iron oxide core-shell nanowires as diagnostic tools, included in the Appendix of this dissertation. Specifically, I studied their capability to act as magnetic resonance imaging contrast agents for cell labeling, detection and tracking. Therein, a high performance as T2 contrast agents was confirmed evaluating the effect of oxidation and surface coatings on the T2 contrast in the tailored transverse relaxivities. The detection of nanowire-labeled cancer cells was demonstrated in T2-weighted images of cells implanted in tissue-mimicking phantoms and in mouse brain. Labeling the cells with nanowires enabled high-resolution cell detection after in vivo implantation (~10 cells) over a minimum of 40 days. The capability of these magnetic nanowires of being remotely controllable and detectable make them an attractive option in the treatment and diagnosis of cancer and in cell therapy. Future directions include preclinical studies for testing the nanowire-based photothermal therapy for tumor ablation.
70

Localized Heating in Membrane Distillation for Performance Enhancement

Mustakeem, Mustakeem 12 1900 (has links)
Membrane distillation (MD) is an emerging technology capable of treating high-saline feeds and operating with low-grade heat energy. However, commercial implementation of MD is limited by so-called temperature polarization, which is the deviation in the temperature at the feed-membrane interface with respect to the bulk fluid. This work presents solutions to alleviate temperature polarization in MD by employing a localized heating concept to deliver heat at the vicinity of the feed-membrane interface. This can be realized in multiple ways, including Joule heating, photothermal heating, electromagnetic induction heating, and nanofluid heating. In the first experiment, a Joule heating concept was implemented and tested, and the results showed a 45% increase in permeate flux and a 57% decrease in specific energy consumption. This concept was further improved by implementing a new dead-end MD configuration, which led to a 132% increase in the gained output ratio. In addition, the accumulation of foulants on the membrane surface could be successfully controlled by intermittent flushing of feedwater. Three-dimensional CFD calculations of conjugate heat transfer revealed a more uniform heat transfer and temperature gradient across the membrane due to the increased feedwater temperature over a larger membrane area. In another approach, a photothermal MD concept was used to heat the feed water locally. A 2-D photothermal material, MXene, recently known for its photothermal property, was used to coat commercial MD membranes. The coated membranes were evaluated under one-sun illumination to yield a permeate flux of 0.77 kg.m$^{−2}$h$^{−1}$ with a photothermal efficiency of 65.3% for a feed concentration of 0.36 g.L$^{−1}$. The system can produce around 6 liters of water per day per square meter of membrane. An energy analysis was also performed to compare the efficiency of various energy sources. Considering the sun as a primary energy source, the performance of different heating modes was compared in terms of performance and scale-up opportunities. Overall this work demonstrates that the application of localized heating will enable the scale-up and the use of renewable energy sources to make the MD process more efficient and sustainable. / The illustrative figure was produced by Ana Bigio, scientific illustrator, KAUST.

Page generated in 0.0496 seconds