• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transfert de carbone le long du continuum végétation-sol-nappe-rivière-atmosphère dans le bassin de la Leyre (Landes de gascogne, SO France) / Carbon transfer along the vegetation-soilgroundwater- stream-atmosphere continuum in the Leyre basin (Landes de Gascogne, SO France)

Deirmendjian, Loris 08 December 2016 (has links)
Les systèmes aquatiques continentaux sont des vecteurs majeurs du cycle global du carbone, recevant une quantité importante de carbone qu’ils émettent vers l’atmosphère et exportent aux océans. Nous caractérisons les concentrations et les transferts de toutes les formes carbonées à l’interface eau souterraine-ruisseau-atmosphère, dans un bassin versant de plaine, tempéré, forestier et sablonneux, où l’hydrologie se produit majoritairement au travers du drainage des eaux souterraines. Nous suivons différentes stations couvrant l’ensemble de la variabilité du bassin, depuis les eaux souterraines jusqu’à l’exutoire, avec des proportions variables d’occupation du sol. Le DOC est exporté majoritairement en périodes de crues alors que la même quantité de DIC est exportée entre périodes de crues et d’étiages. Le carbone terrestre dérivé des sols forestiers est la source principale de carbone dans les eaux superficielles et seulement 3% de la NEE est exportée. L’occupation du sol modifie localement les formes de carbone dans les ruisseaux mais à l’échelle du bassin la forêt prédomine. Nous quantifions le dégazage de CO2 en s’appuyant sur un bilan de masse isotopique. Environ 75% du dégazage total se produit dans les ruisseaux de premiers et de seconds ordres, qui se comportent comme des points chauds pour l’émission de CO2. Ce travail de thèse contribue à une meilleure définition du rôle des ruisseaux et des rivières dans le cycle global du carbone. De manière plus précise, il améliore les connaissances sur la proportion du pompage biologique de CO2 atmosphérique d’un écosystème qui est exportée vers le réseau hydrographique, ainsi que le devenir de ce carbone en aval. / Inland waters are a major component of the global carbon cycle. These systems receive a significant amount of carbon from aquatic and terrestrial sources. A part of this carbon is degassed in the atmosphere while another is exported to the oceans. We characterize the concentrations and transfers of all carbon forms at the groundwater-stream-atmosphere interface, in a temperate, forested and sandy lowland watershed, where hydrology occurs in majority through drainage of groundwater. We monitored contrasting study site representative of the diversity of the ecosystem, from groundwater to river mouth, with different proportion of land use. DOC is exported in majority during high flow periods whereas the same amount of DIC is exported between high and base flow periods.Terrestrial carbon that originates from soils forests is the major source of carbon in surface waters but only 3% of the NEE is exported. Land use modifies locally the different forms of carbon in streams but at the basin scale forests predominate. We quantify the degassing ofCO2 based on fairly well balanced isotopic mass balance. About 75% of the total degassing occurs in first and second order streams, which behave as hotspots for CO2 degassing. This work contributes to a better definition of the role of streams and rivers in the global carboncycle. Specifically, this work enhances understanding on the proportion of CO2 pumped byan ecosystem and then exported to the river system, as well as the fate of this carbon downstream.
2

Étude multi-échelle de la température de surface des cours d’eau par imagerie infrarouge thermique : exemples dans le bassin du Rhône / Multi-scale study of river surface temperature using thermal infrared remote sensing : examples in the Rhône basin (South East France)

Wawrzyniak, Vincent 12 December 2012 (has links)
Dans un contexte de changement climatique, la compréhension du régime thermique des cours d’eau est un enjeu important. En mesurant le rayonnement dans le spectre électromagnétique de l’infrarouge thermique (IRT : 0,4-14µm), la télédétection IRT offre la possibilité d’obtenir une cartographie de la température de surface à différentes échelles spatiales. L’approche multi-échelle est ainsi le fil directeur de ce travail.Dans le premier temps, nous utilisons des images satellites Landsat ETM+ pour caractériser les structures thermiques longitudinales et temporelles d’un grand continuum fluvial : le Rhône français (500 km). Une méthode automatique supprimant les pixels contaminés par les entités exondées, est développée, améliorant ainsi la précision des données. Les images nous permettent de comprendre les effets thermiques des affluents et des centrales nucléaires. L’Isère est la principale source d’eau froide, alors que les centrales nucléaires du Bugey, de Saint-Alban et de Tricastin réchauffent le fleuve. Nous mettons en évidence des anomalies thermiques au niveau des aménagements hydroélectriques. Par rapport aux canaux, les Rhône court-circuités (RCC) sont plus sensibles aux conditions extérieures du fait de leur géométrie et de leurs conditions hydrauliques.Dans un second temps, les travaux se focalisent sur un tronçon plus court (50 km) : l’Ain dans sa basse vallée où quatre campagnes IRT aéroportées sont réalisées. Nous développons une méthode statistique permettant de calculer l’incertitude de mesure associée à la construction des profils longitudinaux de température de l’eau. Les artefacts des vraies tendances longitudinales sont ainsi différenciés. Pour comprendre ces tendances, un modèle 1D (thermo-hydraulique) est mis en place sur 21 kilomètres. Il considère les flux de chaleur à l’interface eau-air et les propriétés géométriques ainsi qu’hydrauliques de la rivière. Les arrivées phréatiques associées aux bras morts et aux suintements latéraux sont identifiées sur les images thermiques et intégrées au modèle. Ces arrivées phréatiques peuvent refroidir l’Ain de 0,6°C en été lorsqu’elles représentent 15,7% du débit total.Une échelle plus fine est explorée enfin. Le travail porte cette fois sur neuf tronçons en tresses (1 km) pour lesquels des images IRT à très haute résolution spatiale sont acquises. En caractérisant les distributions spatiales de la température, nous identifions deux types de tronçons. Le premier montre une très faible variabilité thermique spatiale tout au long de la journée. Les cours d’eau de ce type ont bien souvent un régime hydrologique proglaciaire avec des débits estivaux élevés, ce qui tend à homogénéiser la température. Le second type présente une hétérogénéité thermique élevée. La température des chenaux courants varie avec la température de l'air. En revanche, la température des chenaux alimentés par des eaux souterraines est relativement constante au cours de la journée. Nous proposons une méthode ne nécessitant pas d’images IRT pour identifier les tronçons montrant une variabilité thermique élevée.À travers ce travail, nous montrons qu’il est nécessaire de coupler les approches spatiales et temporelles pour comprendre la température des cours d’eau. Longtemps, les mesures ont été effectuées avec des thermomètres. L’aspect spatial a ainsi souvent été ignoré. La télédétection IRT a permit de mieux appréhender les structures spatiales de température. Toutefois, pour comprendre ces dernières il est indispensable de considérer les changements temporels de température. Il est également nécessaire d’intégrer une approche plus physique permettant de simuler différentes situations pour évaluer l’importance des différents facteurs affectant la température. / In a context of global warming, understanding the thermal regime of rivers is a key issue. By measuring the radiation in the electromagnetic spectrum of thermal infrared (TIR: 0.4-14µm), TIR remote sensing offers the possibility of obtaining surface temperature maps at multiple scales. The multi-scale approach is thus the guiding principle of this work.First we use satellite thermal infrared images from Landsat ETM+ to investigate longitudinal and temporal variations in the thermal patterns of a large river continuum, the French Rhône (500 km). An automated water extraction technique is developed to remove pixels contaminated by terrestrial surfaces. This method improves the accuracy of our data. The images allow us to understand the thermal effects of tributaries and nuclear power plants: the Isère is the main source of cold water while the Bugey, Saint-Alban and Tricastin nuclear power plants warm the river. We show temperature differences within the largest hydroelectric bypass facilities between the bypass section and the canal. The factors responsible for these differences are the length and minimum flow of the bypass section as well as tributaries coming into this reach.Second, we focus on a shorter river (50 km): the lower Ain in France where four airborne TIR surveys are performed. Based on a statistical analysis of temperature differences between overlapping images we calculate the measurement uncertainty associated with TIR derived profiles. This uncertainty allows for the discrimination between artifacts and real longitudinal thermal trends. To understand these trends, we use a 1D determinist model which predicts water temperature at an hourly time step along a 21 km reach. The model considers heat fluxes at the water-air interface as well as the geometrical and hydraulic characteristics of the river. Based on TIR images, groundwater inputs associated with backwaters and lateral seepages are identified. They are inserted into the temperature model. These groundwater inputs can mitigate high water temperatures during the summer by cooling the river up to -0.6°C when they represent 15.7% of the total discharge.A finer scale is finally explored. The work focuses on nine braided reaches located in the French Alps (1 km) where very high spatial resolution TIR images are acquired. By characterizing the spatial distributions of water temperature, we identify two types of reaches. The first type shows a very low thermal spatial variability throughout the day. Rivers of this type often have a proglacial hydrological regime with high summer flows, which tends to homogenize the temperature. The second type exhibits a higher thermal variability with changes during the day. The temperature of flowing channels changes during the daytime according to the air temperature. In contrast, the temperature of groundwater-fed channels exhibits smaller changes which creates thermal variability over space and time. We propose a method which does not require TIR images in order to identify reaches showing high thermal variability.Through this work, we show that it is essential to combine both spatial and temporal approaches to understand river temperature. Thermometers have been used for many years. Thus, the spatial aspect has often been ignored. TIR remote sensing has allowed a better characterization of spatial thermal patterns. However, to understand these patters it is necessary to consider temporal changes of water temperature. It is also necessary to integrate a more physical approach in order to simulate different scenarios and to assess the importance of the different factors affecting water temperature.

Page generated in 0.0134 seconds