Spelling suggestions: "subject:"phycobilisome"" "subject:"phycobiliproteins""
1 |
Interactions between the Orange Carotenoid Protein and the phycobilisomes in cyanobacterial photoprotection / Interactions entre l’Orange Carotenoid Protein et les phycobilisomes dans un mécanisme de photoprotection chez les cyanobactérieJallet, Denis 29 November 2013 (has links)
Un excès d’énergie lumineuse peut être délétère pour les organismesphotosynthétiques ; en effet, il en résulte la formation d’espèces réactives de l’oxygène ausein des centres réactionnels. Les cyanobactéries ont adopté divers mécanismes dephotoprotection afin de contrer ce phénomène. L’un d’eux repose sur l’activité de l’OrangeCarotenoid Protein (OCP), protéine soluble qui attache un kéto-caroténoïde (hydroxyechinenone).Subissant de fortes intensités de lumière bleu-verte, l’OCP se convertit d’uneforme inactive/orange vers sa forme active/rouge. L’OCP ainsi photoactivée possède la facultéd’interagir avec les phycobilisomes - principales antennes collectrices de lumière - induisantla dissipation de l’énergie collectée par ces gigantesques complexes sous forme de chaleur. Lapression d’excitation au niveau des centres réactionnels ainsi que la fluorescence du systèmedécroissent alors.L’OCP photoactivée se fixe au coeur des phycobilisomes qui sont majoritairementconstitués de protéines chromophorylées de la famille des allophycocyanines (APC). J’aiconstruit différentes souches mutantes de Synechocystis PCC 6803 en modifiant ousupprimant les sous-unités mineures d’APC (ApcD, ApcF et ApcE). Ces sous-unités jouent lerôle essentiel d’émetteurs terminaux des phycobilisomes, véhiculant l’énergie qu’ellesreçoivent à la Chlorophylle a. J’ai aussi démontré que le mécanisme photoprotectif associé àl’OCP chez ces mutants restait inchangé, aussi bien in vivo que in vitro. Ces résultatssuggèrent qu’aucun émetteur terminal n’est nécessairement requis pour l’attachement del’OCP aux phycobilisomes et sous-entendent que l’OCP interagit probablement avec unesous-unité majeure d’APC.Divers phycobilisomes, contenant 2, 3 ou 5 cylindres d’APC dans leur coeur, ont étéisolés à partir de cyanobactéries variées. Les OCPs de Synechocytis et d’Arthrospira ont étépurifiées à partir de souches mutantes de Synechocystis. J’ai alors mené une étude in vitro desinteractions entre ces OCPs et les phycobilisomes. Le nombre de cylindres d’APC présents ausein des phycobilisomes n’affecte en rien la diminution de fluorescence. De plus, j’ai constatéque l’OCP de Synechocystis est spécifique pour ses propres phycobilisomes alors que l’OCPd’Arthrospira interagit avec tous les phycobilisomes employés ici. Des hypothèses, fondéessur les structures disponibles, ont été formulées pour élucider ces différences.Les domaines N- et C-terminaux de l’OCP d’Arthrospira ont été dissociés parprotéolyse. Le domaine N-terminal isolé conserve le caroténoïde attaché, ayant uneconformation similaire à celle observée lorsque l’OCP est photoactivée. Ce domaine Nterminalest aussi capable d’induire une importante diminution de la fluorescence desphycobilisomes. A l’inverse, le domaine C-terminal isolé est incolore et n’a aucun effet sur lafluorescence des phycobilisomes. Ces résultats suggèrent que seul le domaine N-terminal del’OCP est impliqué dans l’interaction avec les phycobilisomes. Le domaine C-terminal quantà lui module son activité. / Too much light can be lethal for photosynthetic organisms. Under such conditionsharmful reactive oxygen species are generated at the reaction center level. Cyanobacteria havedeveloped photoprotective mechanisms to avoid this. One of them relies on the solubleOrange Carotenoid Protein (OCP) that binds a ketocarotenoid (hydroxyechinenone, hECN).Under strong blue-green illumination, OCP gets photoconverted from an orange inactive form(OCPo) to a red active one (OCPr). OCPr interacts with phycobilisomes, the majorcyanobacterial light harvesting antennae, and triggers heat dissipation of the excess lightenergy collected by these gigantic pigment-protein complexes. Consequently, excitationpressure on reaction centers and fluorescence emission decrease.OCPr binds to phycobilisome cores, containing mainly chromophorylated proteins ofthe allophycocyanin (APC) family. I constructed Synechocystis PCC 6803 mutants affected insome minor APC forms (ApcD, ApcF and ApcE). These special APCs play the role ofterminal emitters, i.e. funnel light energy to Chlorophyll a. Strong-blue green illuminationtriggered normal OCP-related fluorescence quenching in all mutant cells. The fluorescencedecrease induced by Synechocystis OCP in vitro was similar when using phycobilisomesisolated from wild-type or mutant cells. These results demonstrated that the terminal emittersare not needed for interaction with the OCP and they strongly suggested that OCPr interactswith one of the major APC forms of the phycobilisome core.Phycobilisomes containing 2, 3 or 5 APC cylinders per core were isolated fromdifferent cyanobacterial strains. Synechocystis and Arthrospira OCPs were purified from overexpressingSynechocystis mutant strains. I then performed in vitro OCP/phycobilisomeinteraction studies. The number of APC cylinders per core had no clear influence on theamount of fluorescence quenching. Both OCPs behaved very differently, one appearing muchmore species-specific than the other. Structure-based hypotheses were emitted to explain suchdissimilarity.Arthrospira OCP N-terminal and C-terminal domains were separated throughproteolysis. The isolated N-terminal domain retained a bound carotenoid, which displayedsimilar conformation than in OCPr. This isolated N-terminal domain triggered importantphycobilisome fluorescence quenching even under dark conditions. In contrast, the isolated Cterminaldomain attached no pigment and had no visible effect on phycobilisome emission. Itwas then proposed that only the N-terminal domain of OCP is implied in interactions withphycobilisomes. The C-terminal domain modulates its activity.
|
2 |
Characterization of Genes Involved in Chromatic Acclimation in the Cyanobacterium Synechococcus sp. A 15-62Pokhrel, Suman 01 May 2018 (has links)
Synechococcus, a genus of photosynthetic cyanobacteria, is the second most abundant oxygenic microorganism in the marine environment that contributes significantly to the ocean’s primary productivity (Humily et al. 2013; Shukla et al. 2012). They are capable of utilizing available light of different wavelengths in the visible spectrum to perform photosynthesis and fix carbon dioxide and thus inhabit a wide range of light niches in the ocean along horizontal (coast vs offshore) and vertical gradients (depth) (Humily et al. 2013). A gene encoding a putative lyase isomerase, mpeQ, is present in phycoerythrin-II encoding operon that is expressed constitutively and a gene encoding putative lyase, mpeW, is present in CA-4 genomic island whose expression is regulated by ambient light color were identified and characterized in Synechococcus sp. A15- 62, a strain having a blue light specialist phenotype in its basal state. The amino acid sequence of the proteins encoded by mpeW and mpeQ are similar to other characterized lyases and these genes are conserved in cyanobacteria strains containing the CA4-B genomic island, which controls CA4 (Humily et al. 2013). The MpeW and MpeQ proteins were produced in E. coli and co-expressed with recombinant HT-MpeA and phycoerythrobilin (PEB) synthesis machinery. Site directed mutants of the HT-MpeA protein (Cys75Ala, Cys83Ala, Cys140Ala) were used to investigate the site for bilin attachment. The recombinant protein co-expression experiments of MpeQ and MpeW demonstrated that MpeQ attaches phycoerythrobilin (PEB) to cysteine-83 site on a-phycoerythrin II and isomerizes it to phycourobilin (PUB) and MpeW attaches phycoerythrobilin (PEB) to the same site.
|
3 |
Interactions between the Orange Carotenoid Protein and the phycobilisomes in cyanobacterial photoprotectionJallet, Denis 29 November 2013 (has links) (PDF)
Too much light can be lethal for photosynthetic organisms. Under such conditionsharmful reactive oxygen species are generated at the reaction center level. Cyanobacteria havedeveloped photoprotective mechanisms to avoid this. One of them relies on the solubleOrange Carotenoid Protein (OCP) that binds a ketocarotenoid (hydroxyechinenone, hECN).Under strong blue-green illumination, OCP gets photoconverted from an orange inactive form(OCPo) to a red active one (OCPr). OCPr interacts with phycobilisomes, the majorcyanobacterial light harvesting antennae, and triggers heat dissipation of the excess lightenergy collected by these gigantic pigment-protein complexes. Consequently, excitationpressure on reaction centers and fluorescence emission decrease.OCPr binds to phycobilisome cores, containing mainly chromophorylated proteins ofthe allophycocyanin (APC) family. I constructed Synechocystis PCC 6803 mutants affected insome minor APC forms (ApcD, ApcF and ApcE). These special APCs play the role ofterminal emitters, i.e. funnel light energy to Chlorophyll a. Strong-blue green illuminationtriggered normal OCP-related fluorescence quenching in all mutant cells. The fluorescencedecrease induced by Synechocystis OCP in vitro was similar when using phycobilisomesisolated from wild-type or mutant cells. These results demonstrated that the terminal emittersare not needed for interaction with the OCP and they strongly suggested that OCPr interactswith one of the major APC forms of the phycobilisome core.Phycobilisomes containing 2, 3 or 5 APC cylinders per core were isolated fromdifferent cyanobacterial strains. Synechocystis and Arthrospira OCPs were purified from overexpressingSynechocystis mutant strains. I then performed in vitro OCP/phycobilisomeinteraction studies. The number of APC cylinders per core had no clear influence on theamount of fluorescence quenching. Both OCPs behaved very differently, one appearing muchmore species-specific than the other. Structure-based hypotheses were emitted to explain suchdissimilarity.Arthrospira OCP N-terminal and C-terminal domains were separated throughproteolysis. The isolated N-terminal domain retained a bound carotenoid, which displayedsimilar conformation than in OCPr. This isolated N-terminal domain triggered importantphycobilisome fluorescence quenching even under dark conditions. In contrast, the isolated Cterminaldomain attached no pigment and had no visible effect on phycobilisome emission. Itwas then proposed that only the N-terminal domain of OCP is implied in interactions withphycobilisomes. The C-terminal domain modulates its activity.
|
4 |
Mobilita fotosyntetických proteinů / Mobility of photosynthetic proteinsKRAFL, Jaroslav January 2014 (has links)
Mobility of pigment-protein complexes (phycobilizomes and photosystem II playing a key role in photosynthesis) was studied by FRAP method (Fluorescence Recovery After Photobleaching). FRAP represents a fluorescence based microscopy method enabling measurement of protein mobility in living systems. The protein complexes are bleached by a laser pulse. And mobility of unbleached proteins is measured as a fluorescence recovery in the bleached area. Currently we have only limited knowledge about the mobility of photosynthetic proteins. This work was aimed at optimization of the photosynthetic protein mobility measurement by FRAP. I have performed several methodological experiments which led to the successful assessment of phycobilisome and chlorophyll-containing proteins diffusion coefficients in selected red algae (Porfyridium cruentum, Cyanidium caldarium) and cyanobacteria (Synechocystis PCC6803, Acaryochloris marina). The methodology developed and validated in my thesis was then applied in further research projects.
|
5 |
In vitro and in vivo characterisation of the OCP-related photoprotective mechanism in the cyanobacterium Synechocystis PCC6803 / Caractérisation in vitro et in vivo du mécanisme de photoprotection lié à l'OCP chez la cyanobactérie Synechocystis PCC6803Gwizdala, Michal 16 November 2012 (has links)
De fortes illuminations peuvent être dommageables voire même létales pour les organismes photosynthétiques. Une des stratégies utilisées pour se protéger de tels effets délétères consiste à augmenter la dissipation thermique de l’énergie absorbée en excès au niveau des antennes. Chez les cyanobactéries une protéine photo-active, l’Orange Carotenoid Protein (OCP), contrôle ce processus. Une fois photo-activée l’OCP interagit avec le coeur des phycobilisomes (PBs, les antennes collectrices majoritaires chez les cyanobactéries) et déclenche le mécanisme, entrainant à la fois une baisse de l’énergie parvenant aux photosystèmes et une diminution de la fluorescence des PBs. L’énergie absorbée en excès est dissipée sous forme de chaleur. Pour que les PBs regagnent leur pleine capacité de transfert, une autre protéine nommée Fluorescence Recovery Protein (FRP) est requise. La FRP accélère la désactivation de l’OCP. Dans ce manuscrit, je vais présenter ma contribution à la compréhension du mécanisme de photo-protection lié à l’OCP.J’ai continué la caractérisation de la FRP chez Synechocystis PCC 6803, organisme modèle utilisé dans nos études. J’ai montré que la FRP de Synechocystis est plus courte que ce qui est indiqué dans Cyanobase, commençant en fait à la méthionine 26. Mes résultats ont aussi révélé que la photo-protection n’a lieu que lorsque le ratio OCP/FRP est élevé.Le plus grand aboutissement de ma thèse a été la reconstitution in vitro du mécanisme de photo-protection lié à l’OCP en utilisant de l’OCP, de la FRP et des PBs isolés. J’ai montré que la lumière est requise uniquement pour la photo-activation de l’OCP et que l’attachement de l’OCP au PB ne demande aucune illumination. Ce n’est qu’une fois photo-activée que l’OCP peut interagir avec le PB et entrainer la diminution de fluorescence (quenching). En se basant sur les résultats obtenus in vitro nous avons proposé un modèle moléculaire pour le mécanisme de photo-protection lié à l’OCP. Le système de reconstitution in vitro a été utilisé pour évaluer l’importance d’un pont salin conservé (Arg155-Glu244) entre les deux domaines de l’OCP et a révélé que celui-ci stabilise la forme inactive de l’OCP. La photo-activation entraine rupture du pont salin, l’Arg155 étant ensuite impliquée dans l’interaction entre OCP et PB. Le site d’attachement de l’OCP au coeur du PB a aussi été étudié en utilisant le système in vitro. Nos résultats ont montré que les émetteurs terminaux du PB ne sont pas requis et que le site primaire de quenching est un trimère d’allophycocyanine émettant à 660nm. Enfin nous avons étudié les propriétés des états excités du caroténoïde dans l’OCP photo-activée, montrant qu’un de ces états a un caractère de transfert de charge très prononcé et peut avoir un rôle principal dans la dissipation de l’énergie. Nos résultats suggèrent fortement que non seulement l’OCP induit dissipation de l’énergie absorbée sous forme de chaleur mais aussi que l’OCP agit directement comme dissipateur d’énergie. / Strong light can cause damage and be lethal for photosynthetic organisms. An increase of thermal dissipation of excess absorbed energy at the level of photosynthetic antenna is one of the processes protecting against deleterious effects of light. In cyanobacteria, a soluble photoactive carotenoid binding protein, Orange Carotenoid Protein (OCP) mediates this process. The photoactivated OCP by interacting with the core of phycobilisome (PB; the major photosynthetic antenna of cyanobacteria) triggers the photoprotective mechanism, which decreases the energy arriving at the reaction centres and PSII fluorescence. The excess energy is dissipated as harmless heat. To regain full PB capacity in low light intensities, theFluorescence Recovery Protein (FRP) is required. FRP accelerates the deactivation of OCP.In this work, I present my input in the understanding of the mechanism underlying the OCPrelated photoprotection. I further characterized the FRP of Synechocystis PCC6803, the model organism in our studies. I established that the Synechocystis FRP is shorter than what it was proposed in Cyanobase and it begins at Met26. Our results also revealed the great importance of a high OCP to FRP ratio for existence of photoprotection. The most remarkable achievement of this thesis is the in vitro reconstitution of the OCPrelated mechanism using isolated OCP, PB and FRP. I demonstrated that light is only needed for OCP photoactivation but OCP binding to PB is light independent. Only the photoactivated OCP is able to bind the PB and quench all its fluorescence. Based on our in vitro experiments we proposed a molecular model of OCP-related photoprotection. The in vitro reconstituted system was applied to examine the importance of a conserved salt bridge (Arg155-Glu244) between the two domains of OCP and showed that this salt bridge stabilises the inactive form of OCP. During photoactivation this salt bridge is broken and Arg155 is involved in the interaction between the OCP and the PB. The site of OCP binding in the core of a PB wasalso investigated with the in vitro reconstituted system. Our results demonstrated that the terminal energy emitters of the PB are not needed and that the first site of fluorescence quenching is an APC trimer emitting at 660 nm. Finally, we characterised the properties of excited states of the carotenoid in the photoactivated OCP showing that one of these states presents a very pronounced charge transfer character that likely has a principal role in energy dissipation. Our results strongly suggested that the OCP not only induces thermal energy dissipation but also acts as the energy dissipator.
|
6 |
In vitro and in vivo characterisation of the OCP-related photoprotective mechanism in the cyanobacterium Synechocystis PCC6803Gwizdala, Michal 16 November 2012 (has links) (PDF)
Strong light can cause damage and be lethal for photosynthetic organisms. An increase of thermal dissipation of excess absorbed energy at the level of photosynthetic antenna is one of the processes protecting against deleterious effects of light. In cyanobacteria, a soluble photoactive carotenoid binding protein, Orange Carotenoid Protein (OCP) mediates this process. The photoactivated OCP by interacting with the core of phycobilisome (PB; the major photosynthetic antenna of cyanobacteria) triggers the photoprotective mechanism, which decreases the energy arriving at the reaction centres and PSII fluorescence. The excess energy is dissipated as harmless heat. To regain full PB capacity in low light intensities, theFluorescence Recovery Protein (FRP) is required. FRP accelerates the deactivation of OCP.In this work, I present my input in the understanding of the mechanism underlying the OCPrelated photoprotection. I further characterized the FRP of Synechocystis PCC6803, the model organism in our studies. I established that the Synechocystis FRP is shorter than what it was proposed in Cyanobase and it begins at Met26. Our results also revealed the great importance of a high OCP to FRP ratio for existence of photoprotection. The most remarkable achievement of this thesis is the in vitro reconstitution of the OCPrelated mechanism using isolated OCP, PB and FRP. I demonstrated that light is only needed for OCP photoactivation but OCP binding to PB is light independent. Only the photoactivated OCP is able to bind the PB and quench all its fluorescence. Based on our in vitro experiments we proposed a molecular model of OCP-related photoprotection. The in vitro reconstituted system was applied to examine the importance of a conserved salt bridge (Arg155-Glu244) between the two domains of OCP and showed that this salt bridge stabilises the inactive form of OCP. During photoactivation this salt bridge is broken and Arg155 is involved in the interaction between the OCP and the PB. The site of OCP binding in the core of a PB wasalso investigated with the in vitro reconstituted system. Our results demonstrated that the terminal energy emitters of the PB are not needed and that the first site of fluorescence quenching is an APC trimer emitting at 660 nm. Finally, we characterised the properties of excited states of the carotenoid in the photoactivated OCP showing that one of these states presents a very pronounced charge transfer character that likely has a principal role in energy dissipation. Our results strongly suggested that the OCP not only induces thermal energy dissipation but also acts as the energy dissipator.
|
Page generated in 0.0426 seconds