Spelling suggestions: "subject:"physical anda metallurgical properties"" "subject:"physical ando metallurgical properties""
1 |
Characterisation of the Physical and Metallurgical Propertiesof Natural Iron Ore for Iron ProductionMuwanguzi, Abraham Judah Bumalirivu, Andrey, Karasev V, Joseph, Byaruhanga K, Pär, Jönsson G January 2012 (has links)
The blast furnace is still the dominant form of iron production, but over the years, direct reduction methods have increased due to a number of reasons. Overall, iron production methods have optimal requirements with respect to the feed materials especially iron ore. In this study, tests were carried out on Muko iron ore from Uganda to analyse its suitability to meet the feed requirements of today's dominant iron production methods. More specifically, the Tumbler, Abrasion, and Shatter Indices of the ore were determined. In addition, porosity, thermoanalysis, and reducibility tests were performed. Overall, the Muko ore was found to have good mechanical properties exemplified with tumble and shatter index data >89.0 wt% and <2.5 wt%, respectively. Furthermore, its reducibility at 0.87%/min is within the acceptable range as a natural material feed for blast furnace and direct reduction furnaces. Also, the energy requirement for heating the ore to 1100°C was found to be higher in the samples containing a wider size range of irregular grains and the largest contaminations. In summary, it is concluded that the Muko iron ore has good physical and metallurgical properties to serve as a natural material for the blast furnace and direct reduction furnaces. / <p>QC 20130531</p> / Sustainable Technology Development in the Lake Victoria Region
|
2 |
Characterisation of Muko iron ores (Uganda( for defferent routes of iron productionMuwanguzi, Abraham Judah Bumalirivu January 2010 (has links)
Iron and its products, especially the various forms of steel, have been and still are a vital material in many sectors of life. It is utilized in many industrial activities ranging from production of heavy duty mechanical equipment to light electrical appliances and home appliances. With the world‟s iron ore consumption estimated to stand at 1.3 billion tonnes by 2025, exploitation of any existing natural deposits is of increasing importance to meet the demands of the expanding world economy. Large deposits of iron ore exist in Uganda in the eastern (Tororo) regions and south-western (Kisoro-Kabale) regions of the country. The ore deposits of Kisoro-Kabale consist of an iron-rich hematite grade with less deleterious impurities as compared to that of Tororo. Prospective quantification puts the deposits at 30-50 million tonnes of raw-ore reserves. To date the deposits lay unexploited, with small holder black smith activities taking place in the area. This work involves understanding the occurrence, quantity and quality of the ore plus its properties and characteristics in a bid to pave way for its exploitation for economic use in Uganda and beyond. Characterisation was done on the samples collected from the deposits, to establish its physical, chemical and metallurgical properties. Literature detailing the natural occurrence of the deposits plus the genesis of the parent rocks and ore and the prospective tonnage is included. The economic situation in Uganda as far as demand and consumption of iron and steel is concerned is also briefly highlighted. The chemical, physical and metallurgical characteristics that could facilitate the initial exploitation of the ore are examined with conclusive results from the representative samples examined. The results present Muko ore as a high grade of hematite with an Fe content averaging 68%. The gangue content (SiO 2+Al2O3) of 5 of the 6 samples investigated is < 4%, which is within the tolerable limits for the dominant iron production processes, with its S and P contents being < 0.1% and 0.07% respectively. Thus, Muko iron ore can be reduced in the furnace without presenting major difficulties. With respect to mechanical properties, Muko ore was found to have a Tumble Index value > 85 wt%, an Abrasion Index value < 4 wt% and a Shatter Index value < 2.5 wt%. This implies that the ore holds its form during the processes of mining, transportation, screening and descent when loaded in the furnace for reduction. Its reducibility index was found to be 0.868%/min. This is well within the desired reduction limits for the major iron reduction processes. It implies that a high productivity (in terms of iron reduced) can be realised in the reduction processes in a given period of time. Muko iron ore was found to meet most of the feed raw material requirements (physical, chemical and metallurgical) for the blast furnace and the major direct reduction processes (Midrex, HYL III and SL/RN). Furthermore, for those desired for sinter and pellet making. It can thus serve well as a feed raw material for smelting reduction and direct reduction processes. / QC 20101007 / Sustainable Technological Development in the Lake Victoria Region
|
3 |
Investigating the parameters that influence the behaviour of natural iron ores during the iron production processMuwanguzi, Abraham Judah Bumalirivu January 2013 (has links)
In the iron production processes, sinters and pellets are mostly used as raw materials due to their consistency with respect to physical and chemical properties. However, natural iron ores, as mined, are rarely used directly as a feed material for iron processing. This is mainly due to the fact that they have small contents of iron and high concentration of impurities. Moreover, they swell and disintegrate during the descent in the furnace as well as due to low melting and softening temperatures. This work involves an investigation of the parameters that influence the use of natural iron ores as a direct feed material for iron production. Furthermore, it points out ways in which these can be mitigated so as to increase their direct use in iron production. Natural iron ore from Muko deposits in south-western Uganda was used in this study. Initially, characterisation of the physical and chemical properties was performed, to understand the natural composition of the ore. In addition, investigations were done to study the low temperature strength of the ore and its behaviour in the direct reduction zone. Also, simulations were performed with three models using the experimental data from the direct reduction experiments in order to determine the best model for predicting the direct reduction kinetics of natural iron ores. Chemical analyses showed that the Muko ore represents a high grade of hematite with an Fe content of 68% on average. The gangue content (SiO2+Al2O3) in 5 of the 6 investigated iron ore samples was < 4%, which is within the tolerable limits for the dominant iron production processes. The S and P contents were 0001-0.006% and 0.02-0.05% respectively. These can be reduced in the furnace without presenting major processing difficulties. With respect to the mechanical properties, the Muko ore was found to have a Tumble Index value of 88-93 wt%, an Abrasion Index value of 0.5-3.8 wt% and a Shatter Index value of 0.6-2.0 wt%. Therefore, the ore holds its form during the handling and charging processes. Under low temperature investigations, new parameters were discovered that influence the low temperature strength of iron oxides. It was discovered that the positioning of the samples in the reduction furnace together with the original weight (W0) of the samples, have a big influence on the low temperature strength of iron oxide. Higher mechanical degradation (MD) values were obtained in the top furnace reaction zone samples (3-25% at 500oC and 10-21% at 600oC). These were the samples that had the first contact with the reducing gas, as it was flowing through the furnace from top to bottom. Then, the MD values decreased till 5-16% at a 500oC temperature and 6-20% at a 600oC temperature in the middle and bottom reaction zones samples. It was found that the obtained difference between the MD values in the top and other zones can be more than 2 times, particularly at 500oC temperature. Furthermore, the MD values for samples with W0 < 5 g varied from 7-21% well as they decreased to 5-10% on average for samples with W0 ≥ 5 g. Moreover, the MD values for samples taken from the top reaction zone were larger than those from the middle and bottom zones. During direct reduction of the ores in a H2 and CO gas mixture with a ratio of 1.5 and a constant temperature, the reduction degree (RD) increased with a decreased flow rate until an optimum value was established. The RD also increased when the flow rate was kept constant and the temperature increased. An optimum range of 3-4g was found for natural iron ores, within which the highest RD values that are realised for all reduction conditions. In addition, the mechanical stability is greatly enhanced at RD values > 0.7. In the case of microstructure, it was observed that the original microstructure of the samples had no significant impact on the final RD value (only 2-4%). However, it significantly influenced the reduction rate and time of the DR process. The thermo-gravimetric data obtained from the reduction experiments was used to calculate the solid conversion rate. Three models: the Grain Model (GM), the Volumetric Model (VM) and the Random Pore Model (RPM), were used to estimate the reduction kinetics of natural iron ores. The random pore model (RPM) provided the best agreement with the obtained experimental results (r2 = 0.993-0.998). Furthermore, it gave a better prediction of the natural iron oxide conversion and thereby the reduction kinetics. The RPM model was used for the estimation of the effect of original microstructure and porosity of iron ore lumps on the parameters of the reduction process. / <p>QC 20130531</p> / Sustainable Technology Development in the Lake Victoria Region
|
Page generated in 0.13 seconds