• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 180
  • 83
  • 36
  • 10
  • 8
  • 8
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 403
  • 80
  • 75
  • 65
  • 63
  • 62
  • 46
  • 45
  • 36
  • 36
  • 35
  • 31
  • 31
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Empirical investigation of water pollution control through use of Phragmites australis

Al Akeel, Khaled January 2013 (has links)
This research study addresses a problem of water pollution caused by heavy and toxic metals Cd, Cr, Cu and Pb. The thesis proposes the use of the technique of phytoremediation using Phragmites australis (PA) plants that have the capacity to absorb and to accumulate such metals in their roots and leaves. The metal uptake and their location of accumulation in the PA plants were determined using flame atomic absorption spectroscopy (FAAS) and transmission electron microscopy (TEM) respectively. Leachates from contaminated plant biomass were mixed with silver nitrate to assess the manufacture of metal nanoparticles as an added value step in the process from remediation to biomass disposal. Silver nanoparticles were readily manufactured by the leachates without, with the exception of copper, any incorporation of the pollutant metal. The presence of copper in the manufactured silver nanoparticles may be of some commercial use. The results obtained show that PA plants will accumulate toxic metals when in hydroponic culture and that the majority of the accumulated metals are sequestered in the roots and do not enter the aerial parts of the plants in significant amounts. Silver nanoparticles were manufactured from the biomass using a low energy route with no additional chemicals, apart from silver nitrate thus reducing the environmental load that would otherwise be present if a chemical means of nanoparticle production was used.
102

Plant growth promotion on and phytoremediation of Athabasca oil sands coarse tailings using the endophytic fungus, Trichoderma harzianum TSTh20-1

2014 February 1900 (has links)
The environmental impact of bitumen mining in the Athabasca region of Canada is of growing concern. Among these concerns is the need and difficulty to remediate and reclaim affected land, including tailing sands (TS), a byproduct of the hot water extraction used to separate bitumen from solid materials. Current reclamation methods consist of multiple steps and take several decades to be effective. The primary reason for the difficulty in reclaiming disturbed land is the harsh environment found within the TS combined with the scale of the problem. TS are extremely nutrient poor, having below-detectable levels of NPK and extremely low C and S. In addition to this TS have pHs outside of environmental normals, and are hydrophobic due to residual hydrocarbons. Previously, an endophytic fungus, Trichoderma harzianum strain TSTh20-1, was isolated from pioneer plants growing naturally on TS sites, and was found to promote plant growth on TS. In my study TSTh20-1 was also found to increase the rate of drought recovery, and to enhance seed germination rates on a variety of soils. Suitable application methods were explored for this endophyte, including seed coatings, granules, as well as direct application to plant/soil. Regardless of method, TSTh20-1 was found to successfully colonize the plants. Twenty-four species of grasses, forbs, and legumes were tested for their ability to grow on TS. The four most successful species (Trifolium repens, Bouteloua gracilis, Medicago sativa, and Elymus trachycaulus) were put into a seed mixture for use in experiments. In mesocosm-scale experiments, plant health and soil parameters were measured after 2 months of growth. Hydrocarbon analysis of the first mesocosm showed a 2.7-fold increase in total hydrocarbons when TSTh20-1 and plants were present, suggesting degradation of large hydrocarbons beyond the scope of the analysis. A repeat experiment using a different source of tailings did not yield this same result. This is most likely due using a source of tailings that had substantially different chemical characteristics. TSTh20-1 was also analyzed for its ability to produce plant hormones or siderophores, to increase peroxidase enzyme activity, to protect plants from reactive oxygen species, and to solubilize phosphate precipitates from soil. All of these are known mechanisms microbes use to promote plant growth.
103

Phytoremediation: An Interim Landscape Architecture Strategy For Canadian Municipalities

Todd, Leila Fazel 24 April 2013 (has links)
Many Canadian cities are faced with the challenge of contaminated lands that remain vacant due to high remediation costs. Redevelopment of these lots to green space enhances the character of our cities and improves human and environmental health. Phytoremediation, the process of treating contaminated soil and water with plants, was explored as a plausible design application towards the re-use of contaminated vacant lands. Based on an integrative literature review synthesis and a phytoremediation example, design guidelines were formulated and then applied to three Canadian municipal sites. An expert panel, including phytoremediation specialists and municipal staff involved with open space planning and development, provided an evaluation of the guidelines. The results demonstrated that the design guidelines are an appropriate foundation for the application of phytoremediation as an interim strategy for transforming contaminated lands into usable green space within Canadian municipalities. / LACF (Landscape Architecture Canada Foundation), Latornell Graduate Travel Scholarship
104

Phytoremediation of heavy metals using Amaranthus dubius

Mellem, John Jason January 2008 (has links)
Thesis (M. Tech.: Biotechnology)-Dept. of Biotechnology and Food Technology, Durban University of Technology, 2008. xiv, 103 leaves : ill. / Phytoremediation is an emerging technology where specially selected and engineered metal-accumulating plants are used for bioremediation. Amaranthus dubius (marog or wild spinach) is a popular nutritious leafy vegetable crop which is widespread especially in the continents of Africa, Asia and South America. Their rapid growth and great biomass makes them some of the highest yielding leafy crops which may be beneficial for phytoremediation. This study was undertaken to evaluate the potential of A. dubius for the phytoremediation of Chromium (Cr), Mercury (Hg), Arsenic (As), Lead (Pb), Copper (Cu) and Nickel (Ni). Locally gathered soil and plants of A. dubius were investigated for the metals from a regularly cultivated area, a landfill site and a sewage site. Metals were extracted from the samples using microwave-digestion and analyzed using Inductively Coupled Plasma – Mass Spectroscopy (ICP-MS). Further experiments were conducted with plants from locally collected seeds of A. dubius, in a tunnel house under controlled conditions. The mode of phytoremediation, the effect of the metals on the plants, the ability of the plant to extract metals from soil (Bioconcentration Factor - BCF), and the ability of the plants to move the metals to the aerial parts of the plants (Translocation Factor - TF) were evaluated for the different metals. Finally, A. dubius was micro-propagated in a tissue culture system with and without exposure to the metal, and the effect was studied by electron microscopy.
105

Metal removal from contaminated soil by hyper-accumulating plants : effects of repeated croppings

Bricker, Timothy J. January 2000 (has links)
Phytoremediation, i.e., the use of plants to clean up contaminated soil, may serve as a feasible alternative if a high-biomass crop can be found that accumulates metals to a high.degree. Two plant species, corn (Zea mays) and Indian mustard (Brassica juncea), were grown in soil from a Superfund site contaminated with Pb and Cd (PbTota, = 65,200 mg/kg and CdTotI = 52 mglkg) over two croppings. Soil treatments consisted of composted sewage sludge (CSS), ethylenediaminetetraacetic acid (EDTA), and sodium citrate at two concentrations. In most cases, the EDTA and citrate treatments were superior in terms of extracting soil Pb into root tissue, and translocation of Pb into aboveground biomass. The CSS treatment typically resulted in the lowest Pb removal efficiencies. The high pH (7.4) and high exchange capacity of the CSS may have immobilized soil Pb. Soil Cd was generally more mobile than soil Pb. The EDTA2 treatment was most effective in removing soil Pb into roots, and translocation to shoots. Lead remaining in the soil after two croppings was mainly associated with the carbonate, organic, and residual fractions, which represent the less bioavailable form of this metal. / Department of Natural Resources and Environmental Management
106

Field scale phytoremediation trials of lead and cadmium-contaminated soil

Hee, Calvin K. January 2005 (has links)
There is an ever-increasing need to address problems associated with the creation and disposal of wastes which result from human activities. Pb and Cd contamination is a common problem at many abandoned and uncontrolled commercial and industrial sites. Phytoremediation is one technology that can be employed to remove metals such as Pb from the soil. This study investigated the effectiveness of several plant and soil treatments on the uptake and retention of Pb and Cd by vegetation from contaminated soil at a Superfund site. Field plots were established and plant treatments included a mixture of grasses including Festuca, Poa. and Phleum; red clover (Trifolium Pratense); and sunflower (Helianthus annuus). Soil treatments included a common NPK fertilizer, ethylenediaminetetraacetic acid (EDTA), dilute sulfuric acid (H2SO4), and a mixture of EDTA and H2SO4 (EDTA+H2SO4). Trifolium tissue contained a greater quantity of Pb (182 mg Pb/kg tissue) than that of Poa (65 mg Pb/kg tissue). Cadmium concentration was similar in Poa and Trifolium tissue. ranging from 7.2 to 10.6 mg/kg tissue. Different soil treatments affected Pb levels found in plant tissue in order of effectiveness: H2SO4>EDTA>NPK>EDTA+H2SO4 The effects of soil treatments on Cd levels were similar to those for Pb with a difference of 0.1 mg Cd/kg tissue between EDTA and NPK treatments. Soil amendments differentially influenced Pb bioavailability and uptake, with H2SO4 exhibiting the greatest positive influence on Pb and Cd concentration in tissue. There was no correlation between the quantity of Pb and Cd up taken by vegetation at the site. The current study demonstrated the capability of common native plant species to grow on toxic and infertile soils, and the ability to uptake Pb and Cd to a limited degree. Regardless of tissue concentrations of Pb or Cd, Poa coverage at the site was generally dense. demonstrating the ability of Poa to become established on toxic soils and prevent soil erosion. / Department of Natural Resources and Environmental Management
107

Phytoremediation of nitroglycerin in smokeless powders

Asbaghi, Navid 21 July 2012 (has links)
Access to abstract restricted until July 21, 2015. / Asscess to dissertation restricted until July 21, 2015 / Department of Natural Resources and Environmental Management
108

Phytoremediation systems for treatment of contaminant mixtures in soil

Duxbury, Patrick H. January 2000 (has links)
Plant-based remediation techniques that can address mixtures of heavy metals and organic contaminants in soil warrant investigation due to their cost effectiveness and public acceptability. The potential of phytoremediation to remediate mixtures of heavy metals and hydrocarbons in soil is presented in two papers. A hydropic screening of twenty-seven forage grasses, grown in a solution containing 100 muM Zn, 5 muM Cu and 1 muM Cd, provided six species that were exceptionally metal tolerant. These six species were examined for their growth response and root phenolic secretion at five levels of hydroponic heavy metal contamination. Phenolic secretion, an indicator of a plant's capacity to promote polycyclic aromatic hydrocarbon (PAH) degradation, increased with heavy metal contamination, however, the values were low (<30 mug/g root). Two high biomass producing, metal-tolerant grasses, Bromus riparius and Arrhenatherum elatius, were combined with M2Rhizo4, a strain of plant growth-promoting rhizobacteria. The plant-bacterial combinations were established in artificial and genuine soils contaminated with heavy metals and PAHs at a range of concentrations. In contaminant-free artificial soil, inoculation promoted B. riparius growth by 25% compared to non-inoculated plants. In artificial soil, contaminated with 495 mg/kg Zn, 263 mg/kg Cu and 23 mg/kg Cd, M2Rhizo4 promoted B. riparius growth by 22%. In chromated-copper-arsenate (CCA) and creosote contaminated soil, M2Rhizo4 inoculated A. elatius had 15% more biomass and greater survival rates than non-inoculated A. elatius. A phytoremediation system composed of metal-tolerant plants inoculated with hydrocarbon-degrading or plant growth promoting bacteria may be suitable for sites contaminated with a mixtures of hydrocarbons and heavy metals.
109

Renovatio architecture as filter /

Wooley, Jeremy Scott. January 2008 (has links) (PDF)
Thesis (M Arch)--Montana State University--Bozeman, 2008. / Typescript. Chairperson, Graduate Committee: Christopher Livingston. Includes bibliographical references (leaves 101-105).
110

Earth field magnetic resonance imaging and paramagnetic contrast agents

Mortazavi, Saideh Sadat, January 2009 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2009. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.

Page generated in 0.1158 seconds