• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 6
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

O problema de roteamento e programação de navios com coleta e entrega na indústria de petróleo : modelagem e métodos de solução exatos

Furtado, Maria Gabriela Stevanato 01 April 2016 (has links)
Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2017-01-24T10:38:55Z No. of bitstreams: 1 TeseMGSF.pdf: 2372267 bytes, checksum: 33d2a1fb8316befd39ea4c2aa4e6a69e (MD5) / Approved for entry into archive by Camila Passos (camilapassos@ufscar.br) on 2017-02-08T10:50:29Z (GMT) No. of bitstreams: 1 TeseMGSF.pdf: 2372267 bytes, checksum: 33d2a1fb8316befd39ea4c2aa4e6a69e (MD5) / Approved for entry into archive by Camila Passos (camilapassos@ufscar.br) on 2017-02-08T10:51:23Z (GMT) No. of bitstreams: 1 TeseMGSF.pdf: 2372267 bytes, checksum: 33d2a1fb8316befd39ea4c2aa4e6a69e (MD5) / Made available in DSpace on 2017-02-08T10:51:33Z (GMT). No. of bitstreams: 1 TeseMGSF.pdf: 2372267 bytes, checksum: 33d2a1fb8316befd39ea4c2aa4e6a69e (MD5) Previous issue date: 2016-04-01 / Outra / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / The object of this study is the routing and scheduling problem of vessels with pickup and delivery and time windows in the oil industry. A case study was performed in a Brazilian oil industry that produces crude oil in o shore platforms, that is, located in the ocean, and transports to the terminals located in the Brazilian coast. Then, it was proposed a mixed integer model to represent the problem adequately and for this, a detailed analysis of the real problem in order to know all its characteristics and consider some simplifying assumptions. Therefore, to the pickup and delivery problem with time windows present in the literature were aggregated other speci c restrictions of the case study, for example, multiple depots, ship mooring restrictions, exible draft and dynamic positioning. Besides that, the eet is heterogeneous related to capacity, LOA (length overall), dynamic positioning and velocity. In practice, in general there are no identical vessels. This problem can be represented as a combinatorial optimization model, which belongs to the NP-hard class and its solution is a challenging in practice depending on the size of the real problems. Then, were proposed several exact branch-and-cut methods based on models with 2 and 3-index variables for routing problems with pickup and delivery and time windows to solve speci cally the Brazilian oil industry problem. Finally, we proposed a branch-and-price method, which includes all characteristics of the problem in oil industry. In summary, the main contributions of this thesis are related to the study and modeling of this problem in practice, and the proposal and development of exact solution methods to solve it, based on branch-and-cut and branch-and-price. The performance of the mathematical model in optimization software and the exact methods were veri ed using a real data set provided by the company. Results show that these approaches may be e ective to solve problems of moderate size in real situations. / O objeto de estudo deste trabalho é o problema de roteamento e programação de navios com coleta e entrega e janelas de tempo na indústria petrolífera. Foi realizado um estudo de caso com uma empresa petrolífera brasileira que produz óleo cru em plataformas o shore, isto é, localizadas no oceano e os transporta até os terminais localizados na costa brasileira. Então, foi proposto um modelo de programação inteira mista para representar o problema adequadamente e para isso, foi necessária uma análise detalhada do problema real, com o intuito de conhecer todas as suas características e considerar hipóteses simpli cadoras. Desta maneira, ao problema de coleta e entrega e janelas de tempo da literatura foram agregadas outras restrições especí cas do problema do estudo de caso como, por exemplo, múltiplos depósitos, restrições de atracação dos navios, calado exível e posicionamento dinâmico. Além disso, a frota de navios é heterogênea em relação à capacidade, LOA (length overall ), posicionamento dinâmico e velocidade. Na prática, em geral não existem navios iguais. Este problema pode ser representado como um modelo de otimização combinatória que pertence à classe NP-difícil e sua solução é bastante desa adora na prática em função do tamanho dos problemas reais. Depois, foram propostos vários métodos do tipo branch-and-cut baseados em modelos com variáveis de 2 e 3-índices para problemas de roteamento com coleta e entrega e janelas de tempo para resolver especi camente o problema da empresa brasileira. E por m, foi proposto um método do tipo branch-and-price, o qual abrange todas as características do problema da indústria petrolífera. Em síntese, as principais contribuições desta tese referem-se ao estudo e modelagem deste problema na prática, e a proposta e desenvolvimento de métodos de solução exatos para resolvê-lo, baseados em branch-and-cut e branch-and-price. O desempenho do modelo matemático em softwares de otimização e também dos métodos exatos propostos foi veri cado usando-se exemplares reais fornecidos pela empresa. Os resultados mostram que essas abordagens podem ser efetivas para resolver problemas de tamanho moderado em situações reais.
12

Routing and Scheduling with Time Windows: Models and Algorithms for Tramp Sea Cargos and Rail Car-Blocks

Daniel, Aang 20 November 2006 (has links)
This thesis introduces a new model formulation to solve routing and scheduling problems, with the main applications in answering routing and scheduling problems faced by a sea-cargo shipping company and a railroad company. For the work in sea-cargo routing and scheduling, we focus on the tramp shipping operation. Tramp shipping is a demand-driven type of shipping operation which does not have fixed schedules. The schedules are based on the pickup and download locations of profitable service requests. Given set of products distributed among a set of ports, with each product having pickup and download time windows and a destination port, the problem is to find the schedule for a fleet of ships that maximizes profit over a specified time horizon. The problem is modeled as a Mixed Integer Non-Linear Program and reformulated as an equivalent Mixed Integer Linear Program. Three heuristic methods, along with computational results, are presented. We also exploit the special structure enjoyed by our model and introduce an upper-bounding problem to the model. With a little modification, the model is readily extendable to reflect soft time windows and inter-ship cargo-transfers. The other part of our work deals with train routing and scheduling. A typical train shipment consists of a set of cars having a common origin and destination. To reduce the handling of individual shipments as they travel, shipments are grouped into blocks. The problem is that given sets of blocks to be carried from origins to destinations, construct the most cost effective train routes and schedules and determine block-to-train assignments, such that the number of block transfers (block swaps) between trains, the number of trains used, and some other cost measures are minimized. Incorporating additional precedence requirements, the modeling techniques from the shipping research are employed to formulate a mixed integer nonlinear program for this train routing and scheduling problem. Computational results are presented.
13

Heuristiky pro kapacitní úlohy kurýrní služby / Heuristics for capacitated messenger problem

Přibylová, Lenka January 2013 (has links)
This diploma thesis deals with static and dynamic capacitated messenger problem and its solving with heuristic algorithms. Different variations of the capacitated messenger problem were considered, with a single messenger or multiple messengers, with one depot or multiple depots in case of multiple messengers. Limited time for route realization was another modification that was considered. Modified nearest neighbour method, modified insertion method and modified exchange method were used to solve the problem. The main contribution of the thesis is deriving heuristics for described types of messenger problem and programming the algorithms in VBA (Visual Basic for Applications) in MS Excel. The results of computational experiments indicate that modified nearest neighbour method leads to better outcomes in static multiple messenger problems with a single depot, while modified insertion method is associated with lower values of objective function in static multiple messenger problem with multiple depots. Modified exchange method improves original solutions. Modified insertion method was approved for solving dynamic multiple messenger problems.

Page generated in 0.1035 seconds