• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Piecewise polynomial functions on a planar region: boundary constraints and polyhedral subdivisions

McDonald, Terry Lynn 16 August 2006 (has links)
Splines are piecewise polynomial functions of a given order of smoothness r on a triangulated region (or polyhedrally subdivided region) of Rd. The set of splines of degree at most k forms a vector space Crk() Moreover, a nice way to study Cr k()is to embed n Rd+1, and form the cone b of with the origin. It turns out that the set of splines on b is a graded module Cr b() over the polynomial ring R[x1; : : : ; xd+1], and the dimension of Cr k() is the dimension o This dissertation follows the works of Billera and Rose, as well as Schenck and Stillman, who each approached the study of splines from the viewpoint of homological and commutative algebra. They both defined chain complexes of modules such that Cr(b) appeared as the top homology module. First, we analyze the effects of gluing planar simplicial complexes. Suppose 1, 2, and = 1 [ 2 are all planar simplicial complexes which triangulate pseudomanifolds. When 1 \ 2 is also a planar simplicial complex, we use the Mayer-Vietoris sequence to obtain a natural relationship between the spline modules Cr(b), Cr (c1), Cr(c2), and Cr( \ 1 \ 2). Next, given a simplicial complex , we study splines which also vanish on the boundary of. The set of all such splines is denoted by Cr(b). In this case, we will discover a formula relating the Hilbert polynomials of Cr(cb) and Cr (b). Finally, we consider splines which are defined on a polygonally subdivided region of the plane. By adding only edges to to form a simplicial subdivision , we will be able to find bounds for the dimensions of the vector spaces Cr k() for k 0. In particular, these bounds will be given in terms of the dimensions of the vector spaces Cr k() and geometrical data of both and . This dissertation concludes with some thoughts on future research questions and an appendix describing the Macaulay2 package SplineCode, which allows the study of the Hilbert polynomials of the spline modules.

Page generated in 0.1301 seconds