• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Research and Analysis on Piezoelectric Properties of Near-field Electrospinning PVDF Nanofiber

Lai, Hao-Wei 31 August 2011 (has links)
In this study, with near-field electrospinning technique of PVDF (Polyvinylidene fluoride) piezoelectric nano-fibers and the additional multiwalled-carbon nanotubes(MWCNT), both mechanical strength and piezoelectric characteristics of a single nano-fiber were discussed. Then the behavior of piezoelectric fiber actuators was realized using inverse piezoelectric effect. Near-field electrostatic technology can be used to fabricate PVDF piezoelectric fibers with an excellent piezoelectric property compared with film structures due to a higher piezoelectric coefficient and energy conversion efficiency. It is more suitable to produce micro transducers. By adjusting velocity of a fully parametric x-y stage, DC voltage, and the distance between the needle and collection plate, the morphology and polarization intensity of piezoelectric fiber can fully be controlled. In addition, the optimal parameters of PVDF solution such as PVDF powder weight percentage and MWCNT were also discussed. From the observation of XRD (X-ray diffraction), it reveals a high diffraction peak at 2£c=20.8¢X of piezoelectric crystal £]-phase structure. Finally, the actuation property was tested using DC voltage supply, and fiber has significant deflection in the experiment. The vertical deflection can be observed and compared with model solution of piezoelectric cantilever structure. In the fiber¡¦s direct piezoelectric effect, the result shows that fiber can produce an open circuit voltage of 15mV under a low frequency vibration of 7Hz.
2

Design and fabrication of PVDF electrospun piezo- energy harvester with interdigital electrode

Tsai, Cheng-Hsien 01 September 2011 (has links)
This study used electrospinning to fabricate a polyvinylidene fluoride (PVDF) piezoelectric nanofiber harvesting device with interdigitated electrode to capture ambient energy. According to d33 mechanical-electric energy conversion mode, the energy harvesting device can be applied on the low frequency ambient vibration and impact abilities for the transformation mechanical energy into electrical energy effectively. First, the PVDF powder was mixed in acetone solution uniformly and the dimethyl sulfoxide (DMSO) was mixed with multi-walled carbon nanotube (MWCNT) to prepare PVDF macromolecular solution. The mixed solution was filled in a metals needle injector and contacted hundreds of voltage. After the PVDF drop in the needle was subjected to high electric field, the drop overcame surface tension of the solution itself, then extremely fine PVDF fiber was formed and spun out. The electrospun was collected orderly using X-Y digital control stage and the linear diameter of electrospun can be controlled easily by adjusting the travelling speed of the stage. In the spinning process, as affected by stretching strain and electric field at the same time, the PVDF piezoelectric fiber resulted in electric polarization and transformed £] piezoelectric crystal phase, in which the dipoles are oriented in the same direction. Furthermore, MWCNT was added to improve the mechanical properties of fiber and increase £] phase, to enhance the tensile strength and piezoelectric property of PVDF fiber effectively. Finally, the photolithography was used to fabricate interdigitated electrodes with 100£gm gap on the flexible PI substrate. The PVDF fibers, with a length and diameter of approximately 1cm and 700-1000nm, were aligned on interdigitated electrodes and packaged with the PI film. In order to increase the conversion efficiency of piezoelectric fiber in d33 mode, the PVDF fibers were repolarized in a high electric field. The results showed that the PVDF fiber energy harvesting device can generate 15mV open-circuit voltage under low frequency vibration of 4Hz and generate above 30mV open-circuit voltage under 6Hz vibrations. As compared with the piezoelectric fiber not repolarized by interdigitated electrode, its output voltage was increased by1- 2 times.
3

New cylindrical near-field electrospun PVDF fibers

Ou, Zong-Yu 13 August 2012 (has links)
In this study, a cylindrical near-field electrospining (CNFES) process will be used to fabricate permanent piezoelectricity of polyvinylidene fluoride (PVDF) piezoelectric fibers, and a piezoelectric fiber harvesting device with parallel electrode was fabricated to capture ambient energy. First, the PVDF powder was mixed in acetone solution uniformly and the dimethyl sulfoxide (DMSO) was mixed with fluorosurfactant to prepare PVDF macromolecular solution. The PVDF macromolecular solution was filled in a metals needle injector and contacted a high power supply, after the PVDF drops in the needle was subjected to high electric field, the drops became a Taylor cone and overcame surface tension of the solution itself, extremely fine PVDF fiber was formed and jetted out. The fibers were collected numerous and quickly by homemade cylindrical collector and the diameter of fiber could be controlled easily by adjusting the rotating speed of the cylinder and the electric field. From the observation of XRD (X-ray diffraction), it reveals a high diffraction peak at 2£c=20.7¢X of piezoelectric crystal £]-phase structure by adjusting PVDF concentrations and DC voltage. By providing 7Hz shake and 0.23% strain, the piezoelectric fiber harvesting device with parallel electrode could generate 76mV; by providing 7Hz shake and 0.14% strain, the device could generate 1.1nA.

Page generated in 0.0849 seconds