• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of CO2-Pneumoperitoneum on Ventilation Perfusion Distribution of the Lung

Strang, Christof January 2011 (has links)
Laparoscopic operations are a common and popular way for abdominal procedures. They are usually performed by insufflation of carbon dioxide (CO2) into the abdominal cavity. However, insufflation of CO2 may interfere with cardiac and circulatory as well as respiratory functions. The CO2-pneumoperitoneum (PP) may cause hypercarbia and acidosis. The direct effects of CO2 and acidosis lead to decreased cardiac contractility, sensitization of the myocardium to arrhythmogenic effects of catecholamines and systemic vasodilatation. There may even be long-lasting post-operative effects on breathing control. The pneumoperitoneum may also cause several respiratory changes, e.g. decreased functional residual capacity (FRC) and vital capacity (VC), formation of atelectasis, reduced respiratory compliance and increased airway pressure. Still, arterial oxygenation is mostly maintained or even improved during PP. In view of the apparently contradictory results in respiratory mechanics and gas exchange, the present studies were performed to evaluate respiratory changes on gas exchange and ventilation-perfusion distributions during PP in a porcine model. It was demonstrated that atelectasis during anaesthesia and PP may be estimated by an increased arterial to endtidal PCO2-gradient (study I). Perfusion was redistributed away from dorsal, collapsed lung regions when PP was established. This resulted in a better ventilation-perfusion match (study II). Increasing abdominal pressure shifted blood flow more and more away from collapsed lung tissue, decreased pulmonary shunt and improved oxygenation from 8 to 16 mmHg PP, despite an increase of atelectasis formation (study III). CO2-PP enhanced the shift of blood flow towards better ventilated parts of the lung compared to Air-PP. Moreover, sodium natriumprusside worsened the ventilation-perfusion match even more and blunted the effects previously seen with carbon dioxide. CO2 should therefore be the mediator of enhancing HPV during PP. In conclusion, pneumoperitoneum with CO2 causes atelectasis with elimination of ventilation in the dependent lung regions. However, an efficient shift of blood flow away from collapsed, non-ventilated regions results in a better ventilation-perfusion matching and better oxygenation of blood than without PP. A prerequisite for the beneficial effect is the use of carbon dioxide for the abdominal inflation, since it enhances HPV.

Page generated in 0.0764 seconds