• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Arf GTPase exchange factor Sec7p interaction network:

Gloor, Yvonne 12 December 2017 (has links) (PDF)
The Golgi apparatus is the main crossroad of the intracellular trafficking network in all eukaryotic cells and plays a crucial role in the distribution of cellular material. To ensure the proper sorting and delivery of cargo proteins to their destination while maintaining Golgi homeostasis the coordination of all transport events to and from this organelle is required. Although a cascade of activation events has already been reported for Golgi Ypt/Rab proteins that function in the exocytic pathway, their connection to incoming vesicles from endosomal compartments or to the different Arf mediated vesicle formation machineries has still to be established. In addition, the role of lipids and the interplay between lipid and protein regulators at the Golgi are largely missing. In the present study, we used several approaches to unravel the crosstalk between known regulators of Golgi trafficking and to identify new proteins involved in this process. As starting point, we considered the results from four different screens before focusing on the role of Arf exchange factors. We report two new physical interactors of the late Golgi Arf-GEF Sec7p: the lipid kinase Pik1p and the cyclic nucleotide phosphodiesterase Cpd1p. In addition, our studies on the function of Sec7p revealed additional feature of this protein and it’s relationship to the other yeast Golgi Arf-GEFs. Arf proteins and their regulators play an important role in the formation of vesicles at the exit from the Golgi apparatus. There are three Golgi-localized Arf-GEFs in S.cerevisiae, Sec7p and the redundant Gea1p/Gea2p. While it has been established that Sec7p function does not overlap with the Gea’s, the specific role of these proteins remains unclear. We show that Sec7p colocalizes poorly with the Gea’s, indicating that these proteins activate Arf on different Golgi sub-compartments. In addition, our data suggest that Sec7p mainly promotes the formation of post-Golgi transport vesicles supporting forward transport from the late Golgi while the Gea’s primarily regulate COPI-mediated retrograde traffic. This observation is consistent with published data from mammalian cells and suggests that the spatial and temporal regulation of Arf is conserved from yeast to mammals. Both Arf regulation and phosphatidylinositol 4-phosphate (PI4P) metabolism are important factors for Golgi function. Here, we show that the yeast PI4-kinase, Pik1p binds specifically to Sec7p but not Gea1p or Gea2p. Taken together, the physical interaction, the colocalization and similar transport phenotypes of the respective mutants suggests a functional link between Pik1p and Sec7p but not the Gea’s. In addition, Pik1p binds to the catalytic domain of Sec7p and could directly influence the activity of the GEF. We propose that this interaction coordinates Arf activation with PI4P production to generate a highly specific dual recognition system for the recruitment of specific effectors to the late Golgi. Besides its catalytic domain, Sec7p shares several conserved regions with other members of the BIG/GBF Arf-GEF subfamilies, including the N-terminal DCB (Dimerization/Cyclophilin Binding) domain. We show that a single point mutation in the DCB domain of Sec7p efficiently inhibits Arf activation without affecting membrane recruitment of the GEF and could interfere with a possible dimerization of the protein. We identified Cpd1p as an allele specific dosage suppressor of the Sec7p DCB domain mutation. Cpd1p and Sec7p physically interact and both proteins localize independently to the late Golgi. Increased Golgi level of Cpd1p compensates for the loss of interaction due to the mutation in the DCB domain of Sec7p. The catalytic activity of Cpd1p is important for the rescue, indicating an intriguing connection between the Arf activation cycle and ADP-ribose derivates. We also find that Cpd1p interacts with several other proteins involved in Golgi- and post-Golgi transport events. Hence, Cpd1p is a new regulator of vesicular traffic at the Golgi that could act as a scaffolding factor for Sec7p and other transport proteins.
2

The Arf GTPase exchange factor Sec7p interaction network:: unraveling the crosstalk between key regulators of Golgi transport

Gloor, Yvonne 27 November 2007 (has links)
The Golgi apparatus is the main crossroad of the intracellular trafficking network in all eukaryotic cells and plays a crucial role in the distribution of cellular material. To ensure the proper sorting and delivery of cargo proteins to their destination while maintaining Golgi homeostasis the coordination of all transport events to and from this organelle is required. Although a cascade of activation events has already been reported for Golgi Ypt/Rab proteins that function in the exocytic pathway, their connection to incoming vesicles from endosomal compartments or to the different Arf mediated vesicle formation machineries has still to be established. In addition, the role of lipids and the interplay between lipid and protein regulators at the Golgi are largely missing. In the present study, we used several approaches to unravel the crosstalk between known regulators of Golgi trafficking and to identify new proteins involved in this process. As starting point, we considered the results from four different screens before focusing on the role of Arf exchange factors. We report two new physical interactors of the late Golgi Arf-GEF Sec7p: the lipid kinase Pik1p and the cyclic nucleotide phosphodiesterase Cpd1p. In addition, our studies on the function of Sec7p revealed additional feature of this protein and it’s relationship to the other yeast Golgi Arf-GEFs. Arf proteins and their regulators play an important role in the formation of vesicles at the exit from the Golgi apparatus. There are three Golgi-localized Arf-GEFs in S.cerevisiae, Sec7p and the redundant Gea1p/Gea2p. While it has been established that Sec7p function does not overlap with the Gea’s, the specific role of these proteins remains unclear. We show that Sec7p colocalizes poorly with the Gea’s, indicating that these proteins activate Arf on different Golgi sub-compartments. In addition, our data suggest that Sec7p mainly promotes the formation of post-Golgi transport vesicles supporting forward transport from the late Golgi while the Gea’s primarily regulate COPI-mediated retrograde traffic. This observation is consistent with published data from mammalian cells and suggests that the spatial and temporal regulation of Arf is conserved from yeast to mammals. Both Arf regulation and phosphatidylinositol 4-phosphate (PI4P) metabolism are important factors for Golgi function. Here, we show that the yeast PI4-kinase, Pik1p binds specifically to Sec7p but not Gea1p or Gea2p. Taken together, the physical interaction, the colocalization and similar transport phenotypes of the respective mutants suggests a functional link between Pik1p and Sec7p but not the Gea’s. In addition, Pik1p binds to the catalytic domain of Sec7p and could directly influence the activity of the GEF. We propose that this interaction coordinates Arf activation with PI4P production to generate a highly specific dual recognition system for the recruitment of specific effectors to the late Golgi. Besides its catalytic domain, Sec7p shares several conserved regions with other members of the BIG/GBF Arf-GEF subfamilies, including the N-terminal DCB (Dimerization/Cyclophilin Binding) domain. We show that a single point mutation in the DCB domain of Sec7p efficiently inhibits Arf activation without affecting membrane recruitment of the GEF and could interfere with a possible dimerization of the protein. We identified Cpd1p as an allele specific dosage suppressor of the Sec7p DCB domain mutation. Cpd1p and Sec7p physically interact and both proteins localize independently to the late Golgi. Increased Golgi level of Cpd1p compensates for the loss of interaction due to the mutation in the DCB domain of Sec7p. The catalytic activity of Cpd1p is important for the rescue, indicating an intriguing connection between the Arf activation cycle and ADP-ribose derivates. We also find that Cpd1p interacts with several other proteins involved in Golgi- and post-Golgi transport events. Hence, Cpd1p is a new regulator of vesicular traffic at the Golgi that could act as a scaffolding factor for Sec7p and other transport proteins.
3

Unraveling Phosphatidylinositol 4-kinase function in the yeast Golgi-endosomal system

Demmel, Lars 16 August 2005 (has links) (PDF)
In Saccharomyces cerevisiae, experiments with temperature-sensitive mutants of the PI4-kinase Pik1p revealed that the PI4P pool generated by this enzyme is essential for Golgi morphology and normal secretory function and that the PI4P pool at the Golgi represents a regulatory signal on its own. In order to function as a spatial and temporal regulator of membrane traffic, PI4P synthesis and turnover must be tightly regulated. It remains elusive which factors are involved in the targeting and regulation of Pik1p. Little is also known about PI4P binding proteins mediating the effects of this phosphoinositide on Golgi function. Since it has been shown that multiple pathways leave the Golgi towards the plasma membrane one can ask the question whether Pik1p and its product PI4P specifically control one pathway? Here we demonstrate an interaction of Pik1p with the 14-3-3 proteins Bmh1p and Bmh2p. Interestingly, overexpression of Bmh1p and Bmh2p results in multiple genetic interactions with genes involved in late steps of exocytosis and it affects the forward transport of the general amino acid permease Gap1p. The detected interaction depends on the phosphorylation state of Pik1p and Pik1p phosphorylation accompanies its shuttling out of the nucleus into the cytoplasm where presumably the binding to Bmh1/2p occurs. Therefore, we reason that these interactions might serve the sequestration of Pik1p away from the Golgi. This study reveals that Pik1p shows a strong effect on the delivery of Gap1p to the surface whereas the transport of exocytosis markers implicated in the direct Golgi-to-plasma membrane pathway are not significantly disturbed. Cells carrying a deletion of gga2 also show a strong defect in delivery of Gap1p to the surface. In addition, pik1-101 gga2[delta]double mutants display synthetic genetic and membrane transport phenotypes and recruitment of Gga2 to the TGN partially depends on functional Pik1p. Therefore, our results suggest a role of Pik1p in the TGN to endosome pathway.
4

Novel regulators of trafficking in the yeast Golgi-endosomal system

Gravert, Maike 09 October 2006 (has links) (PDF)
Over the past few years a large amount of work has provided growing insight into the molecular mechanisms that direct post-Golgi trafficking events in the budding yeast Saccharomyces cerevisae. However, a key event in this process, the formation of secretory vesicles at the Golgi and sorting of cargo into these transport carriers, remains poorly understood. It has been demonstrated that phosphatidylinositol 4-phosphate (PI(4)P) generated by the PI(4)-kinase Pik1p plays an essential role in maintenance of Golgi secretory function and morphology. Up to now relatively few targets of Pik1/PI(4)P signaling at the Golgi have been identified and it thus remains elusive how Pik1p mediates its essential function in Golgi secretion. During my thesis work, I used synthetic genetic array analysis (SGA) of a temperature-sensitive mutant allele of PIK1 (pik1-101) in order to gain better understanding of Pik1p function at the TGN and to isolate new regulators of post-Golgi transport in yeast. I identified a total of 85 genes, whose deletion resulted in a synthetic growth defect when combined with the pik1-101 mutation. 21 isolated deletion mutants were used for further analysis, several of which were found to share common trafficking phenotypes with the pik mutant. A striking result of the screen was the finding that Pik1p interacts genetically with several components of a potential post-translational modification pathway referred to as “urmylation pathway”. In addition, a novel, previously uncharacterized subunit of the Transport protein particle (TRAPP) complex was isolated as genetic interactor of Pik1p, suggesting a function for the TRAPP complex in a Pik1p dependent trafficking pathway. Using tandem affinity purification, I could also demonstrate that TRAPP shows previously unknown interactions with other regulators of post-Golgi transport. The second part of this thesis describes the development of a new visual screening approach. Recent work indicates that secretory cargo in yeast can be transported to the cell surface via at least two different exocytic branches. Upon block of one pathway cargo can be partially redistributed into the other pathway. This partial redundancy of exocytic pathways provides one explanation why genetic screens in the past were largely unsuccessful in identifying the molecular machinery that directs vesicle budding and cargo sorting at the TGN. I collaborated in the development of a novel screening method that was devised to circumvent this problem. The method took advantage of the systematic yeast knockout array and was based on the assumption that a defect in cargo sorting and cell surface transport could be detected as intracellular accumulation of a GFP-tagged model cargo. The suitability of our approach for identifying regulators of secretory transport has been demonstrated in a small-scale pilot study that will be presented in this thesis. The screening method proofed to be applicable on a genome-wide scale and can now be used for the screening of additional markers. This novel approach provides an entry point to the comprehensive study of TGN sorting.
5

Unraveling Phosphatidylinositol 4-kinase function in the yeast Golgi-endosomal system

Demmel, Lars 13 September 2005 (has links)
In Saccharomyces cerevisiae, experiments with temperature-sensitive mutants of the PI4-kinase Pik1p revealed that the PI4P pool generated by this enzyme is essential for Golgi morphology and normal secretory function and that the PI4P pool at the Golgi represents a regulatory signal on its own. In order to function as a spatial and temporal regulator of membrane traffic, PI4P synthesis and turnover must be tightly regulated. It remains elusive which factors are involved in the targeting and regulation of Pik1p. Little is also known about PI4P binding proteins mediating the effects of this phosphoinositide on Golgi function. Since it has been shown that multiple pathways leave the Golgi towards the plasma membrane one can ask the question whether Pik1p and its product PI4P specifically control one pathway? Here we demonstrate an interaction of Pik1p with the 14-3-3 proteins Bmh1p and Bmh2p. Interestingly, overexpression of Bmh1p and Bmh2p results in multiple genetic interactions with genes involved in late steps of exocytosis and it affects the forward transport of the general amino acid permease Gap1p. The detected interaction depends on the phosphorylation state of Pik1p and Pik1p phosphorylation accompanies its shuttling out of the nucleus into the cytoplasm where presumably the binding to Bmh1/2p occurs. Therefore, we reason that these interactions might serve the sequestration of Pik1p away from the Golgi. This study reveals that Pik1p shows a strong effect on the delivery of Gap1p to the surface whereas the transport of exocytosis markers implicated in the direct Golgi-to-plasma membrane pathway are not significantly disturbed. Cells carrying a deletion of gga2 also show a strong defect in delivery of Gap1p to the surface. In addition, pik1-101 gga2[delta]double mutants display synthetic genetic and membrane transport phenotypes and recruitment of Gga2 to the TGN partially depends on functional Pik1p. Therefore, our results suggest a role of Pik1p in the TGN to endosome pathway.
6

Novel regulators of trafficking in the yeast Golgi-endosomal system

Gravert, Maike 29 September 2006 (has links)
Over the past few years a large amount of work has provided growing insight into the molecular mechanisms that direct post-Golgi trafficking events in the budding yeast Saccharomyces cerevisae. However, a key event in this process, the formation of secretory vesicles at the Golgi and sorting of cargo into these transport carriers, remains poorly understood. It has been demonstrated that phosphatidylinositol 4-phosphate (PI(4)P) generated by the PI(4)-kinase Pik1p plays an essential role in maintenance of Golgi secretory function and morphology. Up to now relatively few targets of Pik1/PI(4)P signaling at the Golgi have been identified and it thus remains elusive how Pik1p mediates its essential function in Golgi secretion. During my thesis work, I used synthetic genetic array analysis (SGA) of a temperature-sensitive mutant allele of PIK1 (pik1-101) in order to gain better understanding of Pik1p function at the TGN and to isolate new regulators of post-Golgi transport in yeast. I identified a total of 85 genes, whose deletion resulted in a synthetic growth defect when combined with the pik1-101 mutation. 21 isolated deletion mutants were used for further analysis, several of which were found to share common trafficking phenotypes with the pik mutant. A striking result of the screen was the finding that Pik1p interacts genetically with several components of a potential post-translational modification pathway referred to as “urmylation pathway”. In addition, a novel, previously uncharacterized subunit of the Transport protein particle (TRAPP) complex was isolated as genetic interactor of Pik1p, suggesting a function for the TRAPP complex in a Pik1p dependent trafficking pathway. Using tandem affinity purification, I could also demonstrate that TRAPP shows previously unknown interactions with other regulators of post-Golgi transport. The second part of this thesis describes the development of a new visual screening approach. Recent work indicates that secretory cargo in yeast can be transported to the cell surface via at least two different exocytic branches. Upon block of one pathway cargo can be partially redistributed into the other pathway. This partial redundancy of exocytic pathways provides one explanation why genetic screens in the past were largely unsuccessful in identifying the molecular machinery that directs vesicle budding and cargo sorting at the TGN. I collaborated in the development of a novel screening method that was devised to circumvent this problem. The method took advantage of the systematic yeast knockout array and was based on the assumption that a defect in cargo sorting and cell surface transport could be detected as intracellular accumulation of a GFP-tagged model cargo. The suitability of our approach for identifying regulators of secretory transport has been demonstrated in a small-scale pilot study that will be presented in this thesis. The screening method proofed to be applicable on a genome-wide scale and can now be used for the screening of additional markers. This novel approach provides an entry point to the comprehensive study of TGN sorting.

Page generated in 0.0599 seconds