• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 5
  • 2
  • 1
  • Tagged with
  • 73
  • 73
  • 52
  • 18
  • 17
  • 15
  • 11
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The use of mobile mapping technology to automate surveying and monitoring of southern pine beetle

Petty, Saul David 29 August 2005 (has links)
The USDA Forest Service, Forest Health Protection, is responsible for maintaining an ORACLE database named the Southern Pine Beetle Information System (SPBIS). SPBIS was designed to store survey data for Southern Pine Beetle (SPB) infestations on federal land across the southern United States. The main purpose of this project is to improve the SPBIS database to aid in management of SPB infestations to reduce losses, to harvest compromised timber while it still has value, and to assist resource managers in preventing further infestations from becoming established. The SPBIS mobile mapping system addresses current problems with the database and offers viable solutions to each. Mobile mapping technology is a versatile tool, which is used to collect field data, with unique geospatial time tags and attributes, for integrating into or updating a GIS (Rasher 2001). The ability to efficiently collect data is essential to developing a useable database. The time required to manually enter data into the database is substantial. Ranger district personnel often do not have the time or the desire to enter data. Currently, the database is lacking years of survey and infestation data due to these negligent data entry practices, limiting the usefulness database. Currently, SPBIS data is recorded on a paper survey form. This system introduces a digital version of this form. A time study conducted to define the efficiency of each survey showed that the digital form to be more efficient with a Mann-Whitney p- value of 0.004. A comparative study was conducted to define the difference between currently estimated SPB infestation acreage and those measured using GPS. A Mann-Whitney pvalue of 0.000 shows the significant difference between the two acreage values. GPS measured acreage proved to be more accurate thus promoting the use of GPS for measuring acreage. Navigation us ing GPS coordinates was successful and will greatly decrease the time required to locate a SPB infestation on the ground. This thesis describes a mobile mapping system designed specifically to remedy the problems associated with SPBIS. This system eliminates the need for manual entry of field-collected data, while improving field data collection in terms of efficiency and accuracy.
2

Stress detection in loblolly pine using relative apparent temperatures /

Alger, Larry Allen, January 1979 (has links)
Thesis--Virginia Polytechnic Institute and State University. / Vita. Abstract. Includes bibliographical references (leaves 49-53). Also available via the Internet.
3

Some aspects of the population dynamics of the mountain pine beetle, Dendroctonus ponderosae in lodgepole pine forests of British Columbia

Peterman, Randall Martin January 1974 (has links)
Outbreaks of mountain pine beetle (Dendrcctonus ronderosae Hopk.) are common in lodgepole pine forests cf western North America. Characteristics of both the tark beetle and its host tree were compared using field replicates cf epidemic and endemic areas to test for any possible intrinsic differences between populations cf trees cr insects in these two different states. laboratory studies were conducted on beetle dispersal characteristics and cn effects of attack density and female parent size on beetle reproductive success and offspring size. Results are as follows: Trees in outbreak areas are older than in endemic regions, and trees of a given size and beetle attack density are more likely to be overcome and to permit successful beetle reproduction in epidemic than in endemic areas. However, tree spatial distributions, average attack densities and proportions of trees unsuccessfully attacked by beetles dc net differ consistently between epidemic and endemic areas. A method (in which blue-staining fungi were inoculated into trees) of measuring potential of trees tc resist mountain pine beetle was tested and found to be inadequate. Epidemic and endemic bark beetles did not differ consistently in dispersal, size, cr reproductive characteristics. However, early emerging beetles were larger than late emergers and females had a larger coefficient of variation in size than males. Field and laboratory data shew that the number of offspring emerging per parent decreases with increasing attack density. Breeding experiments further indicated that, 1) small female parents produce fewer and smaller offspring than large females, 2) small female parents produce female offspring with more strongly bimcdal size distributions than large females, and 3) high parental attack densities result in smaller offspring. Dispersal studies on the insect using chemical extracts of lodgepole pine bark showed that early emerging beetles are more likely to respond positively to tree chemicals than late emergers with the same flight history. Increasing lengths of flight increase female but not male responses to these chemicals. Evidence from a simulation model is presented tc support the hypothesis that the age at which lodgepcle pine normally becomes susceptible to mountain pine beetle attack is clcse to the age at which certain tree fitness measures are maximized. / Science, Faculty of / Zoology, Department of / Graduate
4

Deriving a Framework for Estimating Individual Tree Measurements with Lidar for Use in the TAMBEETLE Southern Pine Beetle Infestation Growth Model

Stukey, Jared D. 2009 December 1900 (has links)
The overall goal of this study was to develop a framework for using airborne lidar to derive inputs for the SPB infestation growth model TAMBEETLE. The specific objectives were (1) to estimate individual tree characteristics of XY location, individual bole height (IBH), diameter at breast height (DBH), length of crown (CrHT), and age for use in TAMBEETLE; (2) to estimate individual tree age using lidar-estimated height and site index provided by the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Soil Survey Geographic Database (SSURGO); and (3) to compare TAMBEETLE simulation results using field measurements and lidarderived measurements as inputs. Diameter at breast height, individual bole height, and crown length were estimated using lidar with an error for mean measurements at plot level of 0.16cm, 0.19m, and 1.07m, respectively. These errors were within root mean square error (RMSE) for other studies at the study site. Age was estimated using the site index provided by SSURGO and the site index curves created for the study area with an RMSE of 4.8 years for mean plot age. Underestimation of tree height by lidar and error in the site index curve explained 91% of the error in mean plot age. TAMBEETLE was used to compare spot growth between a lidar-derived forest map and a forest map generated by TAMBEETLE, based on sample plot characteristics. The lidar-derived forest performed comparably to the TAMBEETLE generated forest. Using lidar to map forests can provide the large spatial extents of the TAMBEETLE generated forest while maintaining the spatially explicit forest characteristics, which were previously only available through field measurements.
5

Effects of intensive fertilization on soil nutrient cycling in lodgepole pine and interior spruce forests in the Central Interior of British Columbia

Harrison, Daniel 18 October 2011 (has links)
The growth and productivity of British Columbia’s interior forests is largely limited by soil nutrient availability. Fertilization has been shown to be an effective silvicultural tool for increasing the development of immature stands throughout the region. This has lead to increased interest in long-term, repeated fertilization as a means of addressing timber-supply shortfalls as a result of the current mountain pine beetle (Dendroctonus ponderosae) outbreak. However, there is little information related to the impacts of repeated fertilization on the cycling of nutrients in many of these stands. This study makes use of a long-term (13-15 year) fertilization experiment in two lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm) and two interior spruce (Picea glauca [Moench] Voss and Picea engelmannii Parry) forests in the central interior of British Columbia subject to two levels (periodic and annual) of nitrogen(N)-based fertilization. The primary goal of the project was to examine the effects of different fertilizer regimes on aspects of soil chemistry. Specifically, this project was concerned with the impacts of repeated fertilization on: 1) soil carbon (C) and N cycling, and 2) soil base cation (e.g., Ca, Mg & K) availability. Soil and foliar nutrient regimes were quantified throughout the 2008 and 2009 growing seasons using ion-exchange membrane (IEM) plant root simulator (PRS) probes and traditional soil and foliar analyses. Fertilization increased N cycling at all sites, with generally elevated soil and foliar N and significant soil-foliar N relationships in several cases. Nitrate (NO3 -) increased in the fertilized plots in several cases; however, there was minimal evidence of NO3 - leaching. Greater than 90% of fertilizer-N inputs were retained onsite, suggesting these forests are not N-saturated. Soil, tree and total ecosystem C generally increased in response to fertilization, with the spruce sites exhibiting greater C accrual per unit of fertilizer N than the pine sites. Further, significant linear relationships between soil C and N were evident at all sites. At sites with poorly buffered soils (pH < 4), fertilizer treatments generally led to increased soil acidification and decreases in soil and foliar Ca. Decreases in soil Ca may have been due to significant increases in sulfate leaching; whereas foliar Ca decreases appear to be related to compromised uptake systems, potentially from increased soil aluminum. Buffering capacities, rather than forest type, appear to be the best predictor of soil and foliar Ca responses to fertilization. Despite significant changes in soil chemistry at all four sites, it does not appear that current fertilization rates are detrimentally affecting tree growth. / Graduate
6

Multi-partner mutualisms interactions among the mountain pine beetle and two ophiostomatoid fungal associates /

Bleiker, Katherine Patricia. January 2007 (has links)
Thesis (Ph. D.)--University of Montana, 2007. / Title from title screen. Description based on contents viewed Aug. 12, 2008. Includes bibliographical references.
7

Examining the role of collaborative governance in fostering adaptive capacity: A case study from northwest Colorado

Grummon, Christine 27 October 2016 (has links)
Over the past two decades, the mountain pine beetle (MPB) has killed millions of acres of forest across western North America. In addition to extensive environmental disturbance, the MPB epidemic has deeply impacted human systems, including motivating the formation of novel environmental governance arrangements. In Colorado, the Colorado Bark Beetle Cooperative (CBBC) formed as a collaboration between federal, state, and local stakeholders to address the epidemic. This study used a combination of GIS analysis and qualitative document analysis to understand how the CBBC has been able to respond adaptively to changes in the landscape pattern of MPB damage. I found that the CBBC was able to respond adaptively to changes in the MPB outbreak through shifting their organizational direction and activities. However, the adaptive capacity of the group was constrained by logistical factors, the declining importance of MPB at a national level, and the ways in which the group framed the MPB problem.
8

Chemical determinants of tree susceptibility to mountain pine beetle (Dendroctonus ponderosae Hopkins)

Syed, Akbar January 1972 (has links)
Volatile constituents of bark from the two species of pine hosts of the mountain pine beetle, (Dendroctonus ponderosae Hopkins) were investigated as postulated factors in host tree discovery and selective attack by the insect. The anemo-olfactory, klinokinetic and klinotactic responses of pedestrian adult flown females to odors of different aged pines of the species Pinus ponderosa Laws, (ponderosa pine) and Pinus monticola Dougl. (western white pine) were used as criteria to test for evidence as to possible involvement of host tree volatiles in host selection. Volatile substances from pine bark were collected through sublimation under vacuum from frozen state. The volatile extracts were analyzed by Gas-Liquid Chromatography. Total volatile extracts and their ether soluble fraction from mature pine trees were "attractive" to beetles, whereas those from saplings were "repellent." No qualitative differences were found in the ether-soluble fraction of mature trees and saplings respectively, but proportions of individual constituents in the extracts differed. Ethanol at various concentrations caused arrestance of the anemo-olfactory response of pedestrian beetles. As a constituent of trees under stress ethanol may thus play an important role in the programme of responses which lead ultimately to attack. Problems encountered during the storage of tree samples and their extracts have been discussed. / Forestry, Faculty of / Graduate
9

Evaluating habitat use of female moose in response to large scale salvage logging practices in British Columbia, Canada

Francis, Alexandra 01 September 2020 (has links)
Global biodiversity is in decline as a result of unprecedented human alterations to the earth’s land cover. Understanding the ecological mechanisms of these large-scale changes in biodiversity is imperative in furthering our knowledge on the effects these alterations may have on animal behaviour and consequently on populations, allowing researchers and managers to effectively conserve species. During the last decade, there have been reports of moose populations both increasing and decreasing in North America due to a variety of factors (e.g., climate change, habitat disturbance, disease, etc.). Within British Columbia, wildlife managers have reported moose population declines of up to 50 – 70%, while other areas have remained stable. These changes have coincided, spatially and temporally, with the largest recorded mountain pine beetle (Dendroctonus ponderosae) outbreak. The outbreak resulted in extensive logging and road building in attempts to recover economic value from the beetle killed trees, resulting in drastic changes to the landscape. Understanding the effects that a highly disturbed landscape has on a species is critical for effective management and conservation. To investigate this, I examined the seasonal response of female moose to landscape change caused by the Mountain Pine Beetle outbreak and attendant salvage logging infrastructure in the Interior of British Columbia on the Bonaparte Plateau. First, I used a cluster analysis framework to develop biologically relevant seasons for female moose using individual movement and habitat use. I then used this temporal framework to develop seasonal home ranges for each individual moose. Second, I modeled the seasonal habitat selection of female moose to examine how moose respond to salvage logging infrastructure (i.e., dense road network and extensive cutblocks) using resource selection functions in an information-theoretic framework. We tested whether predation risk, forage availability or the cumulative effects of salvage logging best predicted moose space-use. Moose movement data clustered into five biologically relevant seasons, which were consistent with our biological and ecological knowledge of moose in the study area; however, these seasons and the size of the range differed from other seasons defined using alternative methods in the region. Across all seasons, the cumulative effects of forage availability and risk best predicted female moose distribution. In the calving and fall seasons, the top risk model best predicted moose habitat selection while the top forage availability model better explained moose habitat selection in spring, summer, and winter. Our results identified the importance of defining biological seasons using empirical data and how these seasons can differ from arbitrarily defined seasons, as well as the implications these can have in subsequent analysis and management. Additionally, we found that moose are seasonally trading the benefits of foraging for predation risk in these highly disturbed landscapes, using some aspects of salvage logging. My results bring perspective on how moose are using a highly disturbed landscape at the seasonal scale and a nuanced approach to landscape management. / Graduate
10

A qualitative analysis of the southern pine beetle's (Dendroctonus frontalis Zimm.) impact on wildlife, wildfire, and grazing

January 1979 (has links)
M. S.

Page generated in 0.0742 seconds