• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • Tagged with
  • 10
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthese von Stickstoff-Heterocyclen durch enantioselektive Lithiierung

Wagner, Markus. January 2001 (has links)
Münster (Westfalen), Universiẗat, Diss., 2001. / Dateien im PDF-Format.
2

Ringumlagerungsmetathesen zu Azacyclen

Rodriguez y Fischer, Nicolas. January 2004 (has links) (PDF)
Berlin, Techn. Univ., Diss., 2004. / Computerdatei im Fernzugriff.
3

Piperidinderivate mit biologischer Aktivität

Ulmer, Daniela. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2006--Würzburg.
4

Piperidinderivate mit biologischer Aktivität / Piperidine derivatives with biological activity

Ulmer, Daniela January 2006 (has links) (PDF)
Der Piperidin-Heterozyklus kann als wichtiger, multifunktionaler Arzneistoffbaustein angesehen werden, da eine große Anzahl derzeit eingesetzter Arzneistoffe den Piperidin-Derivaten zuzuordnen ist. Dabei kommen diese Substanzen bei einer Vielzahl verschiedenster Indikationen zum Einsatz. Aus diesem Grund wurden im Zuge dieser Arbeit ebenfalls Piperidin-Derivate synthetisiert, und zwar zum einen 2,6-Diaryl-4-oxo-piperidin-3,5-dicarbonsäurediester und 2,6-Diaryl-4-oxo-piperidin-3-carbonsäuremethylester, die auf ihre antiproliferativen Eigenschaften an Protozoen untersucht werden sollten, und zum anderen Spiropiperidinderivate, die als Liganden des Opioidrezeptors ORL1 synthetisiert worden sind. Die synthetisierten Spiropiperidin-Derivate basieren auf der Leitverbindung Ro 64-6198, einem selektiven und hochaffinen Agonisten am ORL1-Rezeptor, welcher als viertes Mitglied der Opioidrezeptor-Familie zugeordnet wurde. Die bisherigen pharmakologischen Untersuchungen konnten ein breites Wirkprofil seines endogenen Liganden Nociceptin aufdecken. Da jedoch aus der Literatur gerade im Bereich der Schmerzmodulation teilweise kontroverse Ergebnisse vorliegen und nur wenig über die Wirkmechanismen bekannt ist, ist die Synthese selektiver Agonisten und Antagonisten notwendig. Ziel dieser Arbeit war es, Derivate der Leitverbindung zu synthetisieren. Die wesentlichste Änderung stellte die Substitution des Piperidin-Grundgerüstes durch Alkylseitenketten dar. Die pharmakologischen Untersuchungen am ORL1-Rezeptor sind jedoch bislang noch nicht abgeschlossen. Unter den Infektionskrankheiten stellt vor allem Malaria eine große Belastung für die hauptsächlich in tropischen Gebieten lebende Bevölkerung dar. Das gleiche gilt für Trypanosomeninfektionen (afrikanische Schlafkrankheit und Chagas-Erkrankung). Das Hauptproblem in der Therapie dieser Infektionen besteht in der zunehmenden Resistenzbildung der Erreger gegenüber den derzeit eingesetzten Arzneistoffen. Die Aufklärung des Polyaminstoffwechsels von Protozoen bietet einen neuen Ansatzpunkt, denn die Unterbrechung dieses Metabolismus durch gezielte Hemmung der beteiligten Enzyme kann die Vermehrung der Protozoen verhindern. Polyamine wie Putrescin, Spermin und Spermidin spielen bei der Zellteilung und -proliferation von Eukaryonten eine maßgebliche Rolle. Gleiches gilt für den durch Metabolisierung des Spermidins aktivierten “eukaryotic initiaton factor“ (eIF5A). Dessen Aktivierung verläuft über die beiden Enzyme Deoxyhypusinsynthase (DHS) und Deoxyhypusin-hydroxylase (DHH). Für die Pflanzenaminosäure L-Mimosin und das Fungizid Ciclopirox ist an Plasmodien bereits eine inhibitorische Wirkung der Deoxyhypusinhydroxylase in vitro und damit verbunden die Hemmung des Plasmodienwachstums nachgewiesen. Beide entfalten ihre Wirkung über die Chelatisierung des im Enzym vorliegenden Metall-Ions Fe(II)/Fe(III). Da nur L-Mimosin in vivo eine inhibitorische Aktivität zeigt, wurde dieses als Leitstruktur für die zu synthetisierenden 2,6-Diaryl-4-oxo-piperidin-3,5-dicarbonsäurediester und 2,6-Diaryl-4-oxo-piperidin-3-carbonsäuremethylester herangezogen. Im Zuge dieser Arbeit konnten diverse Derivate beider Verbindungstypen synthetisiert werden, deren inhibitorische Aktivität in vitro an Plasmodium falciparum und Trypanosoma brucei brucei und deren Zytotoxizität an Makrophagen getestet wurden. Die Synthese erfolgte in beiden Fällen über eine Mannichreaktion. Die IC50-Werte dieser an Trypanosoma brucei brucei untersuchten Verbindungen liegen im Bereich der Aktivität der derzeit bei Trypanosomeninfektionen eingesetzten Arzneistoffe Eflornithin-HCl und Nifurtimox für die Verbindungen 10a-10n bzw. Suramin-Na und Nifurtimox für 11a-11d. Somit stellen die Monoester-Verbindungen die potentere Substanzklasse dar. Die an Plasmodium falciparum getesteten und als inhibitorisch aktiv identifizierten 2,6-Diaryl-4-oxo-piperidin-3,5-dicarbonsäurediestern sind die Derivate 10h-10k. Unter den 2,6-Diaryl-4-oxo-piperidin-3-carbonsäuremethylestern konnte 11c als aktive Verbindung identifiziert werden. Diese Monoester-Verbindung weist im Vergleich zu den aktiven Diester-Derivaten eine 10-fach höhere Potenz auf. Daher ist anzunehmen, dass die Monoester-Derivate auch an Plasmodien die aktivere Substanzklasse darstellen. Die Verbindungen 10h-10k wurden wegen ihrer guten In-vitro-Aktivität an Plasmodium falciparum weiter untersucht. Allerdings konnte in den In-vivo-Versuchen an Plasmodium berghei-infizierten Mäusen keine Hemmung der Parasitämie festgestellt werden. / The piperidine heterocycle can be seen as an important and multitfunctional drug component as many currently used drugs can be classified as piperidine derivatives. These substances are used in a manifold of pharmacological indications. Therefore, piperidine derivatives were synthesised within the course of this work, on the one hand 2,6-diaryl-4-oxo-piperidine-3,5-dicarboxylates and 2,6-diaryl-4-oxo-piperidine-3-carboxylates whose antiproliferative properties against protozoa were investigated, and on the other hand, spiropiperidines which were synthesised as ligands for the opioid receptor ORL1. The spiro-compounds planned are based on the lead structure Ro 64-6198, an agonist at the ORL1-receptor with good selectivity and high affinity. This receptor was classified as the fourth member of the opioid receptor family. The so far investigated pharmacological properties of its endogenous ligand nociceptin showed versatile therapeutic possibilities. However there is too little knowledge about mode of action yet. Especially in terms of pain modulation controversial opinions exist. To clarify these different opinions selective agonists and antagonists are necessary. The aim of this work was to create new derivatives of the lead structure with alkyl residues in position 7 and 9 as the substantial change. By means of a Mannich-condensation followed by saponification and decarboxylation 2,6-dialkyl-4-piperidones were formed. In the next steps the spirocyclisation was accomplished according to the procedure reported by Röver et al. Because the last step of the synthesis of the 1,3,8-triaza-spiro[4.5]decane-4-ones did not yield any or good results (compounds 7g-7i) a different ring closure was tried. This led to the 1,3,8-triaza-spiro[4.5]decane-2,4-diones 8a-8f, 9a-9f and 9k (see table 1). The difference to the compounds synthesised according to Röver et al. is a carbonyl instead of a methylene group at position 2. The pharmacological assays concerning the ORL1-receptor could not be carried out yet. Among infectious diseases, malaria represents the main burden for the population in tropical areas. Besides this, trypanosomal infections like African trypanosomiasis and chagas disease also turn out to be difficult in therapy. The major problem is increasing resistance of the protozoan organisms against current therapeutics. To solve this problem there are great efforts in finding new drug targets. A new strategy is to elucidate the polyamine metabolism of protozoa. By interrupting this pathway by specific inhibition of involved enzymes it is possible to stop protozoan growth. Polyamines like spermine, spermidine and putrescine play an important role in cell differentiation and proliferation within all eukaryotes. The eukaryotic initiation factor eIF5A which is activated by spermidine metabolism is also important in this field. Its activation is catalysed by deoxyhypusine synthase (dhs) and deoxyhypusine hydroxylase (dhh). The plant amino acid L-mimosine and the fungicide ciclopirox both inhibit dhh in vitro and due to this protozoan growth. The effect is caused by building a chelate with the enzyme’s metal-ion Fe(II)/Fe(III). As only L-mimosine showed good inhibitory qualities in the in vivo experiments, we used L-mimosine as the lead structure for the synthesis of 2,6-diaryl-4-oxo-piperidine-3,5-dicarboxylates and 2,6-diaryl-4-oxo-piperidine-3-carboxylates. In both cases several compounds have been prepared by means of a Mannich-condensation. The pharmacological experiments for inhibitory activity were carried out at Trypanosoma brucei brucei and Plasmodium falciparum and for cytotoxicity at macrophages. The 2,6-diaryl-4-oxo-piperidine-3,5-dicarboxylates 10a-10n were synthesised from acetone-1,3-dicarboxylic acid dimethyl- or diethylester, aromatic aldehyde and a primary amine at the ratio of 1:2:1 (see table 2). The IC50 values against Trypanosoma brucei brucei acquired for 10a-10n are comparable to the commonly used antitrypanosomal drugs eflornithin-HCl and nifurtimox. Those acquired for 11a-11d are similar to suramine-Na and nifurtimox. Therefore the monoesters are presumably the more active class of compounds. Further investigation with Plasmodium falciparum showed that the 2,6-diaryl-4-oxo-piperidine-3,5-dicarboxylates 10h-10k have inhibitory effects. Among the 2,6-diaryl-4-oxo-piperidine-3-carboxylates only compound 11c could be identified as an active inhibitor. This monoester derivative shows a ten-fold higher potency in comparison to the diesters and presumably represents the more potent class of compounds. This finding corresponds with the experiments with Trypanosomes. Because of their good inhibitory qualities in vitro at Plasmodium falciparum the compounds 10h-10k were analysed at Plasmodium berghei infected mice in vivo. But no inhibitory effect could be detected.
5

Regioselektive Synthesen 4,4-disubstituierter Piperidinderivate mit Hilfe von N-Silylpyridiniumsalzen

Sperger, Christian January 2007 (has links)
Zugl.: München, Univ., Diss., 2007
6

4-Piperidonderivate als potenzielle DOHH-Inhibitoren: ein neuer Ansatz zur Therapie tropischer Infektionskrankheiten / 4-Piperidone derivatives as potential DOHH-inhibotors: a new approach for the therapy of tropical diseases

Göbel, Tim January 2011 (has links) (PDF)
Die vorliegende Arbeit beschäftigte sich mit der Entwicklung und Synthese von Inhibitoren der Deoxyhypusin-Hydroxylase (DOHH), die einen wichtigen Schritt in der Aktivierung des eukaryotischen Translationsinitiations-Faktors-5A (eIF-5A) katalysiert. Die Hemmung dieses Metalloenzyms durch kleine Moleküle, die mit dem katalytischen Eisenatom im aktiven Zentrum der DOHH einen Chelatkomplex bilden, hat einen antiproliferativen Effekt auf parasitäre Erreger, wie Plasmodien, Trypanosomen und Leishmanien zur Folge. Ausgehend von den antiplasmodial wirksamen Eisenkomplexbildnern und Pyridon-Derivaten Ciclopirox und Mimosin wurden besser wirksame 2,6-Diaryl-4-oxopiperidincarbonsäuremono- und -diester-Derivate abgeleitet, deren 4-Piperidon-Grundgerüst als Leitstruktur für die Entwicklung von antiplasmodialen und antitrypanosomalen Wirkstoffen fungierte. Entsprechend dieser Leitstrukturen gelang im Zuge dieser Arbeit durch verschiedene Modifikationen der Doppel-Mannich-Reaktion die Erstellung einer weitreichenden Bibliothek 52 strukturell diverser 4-Hydroxytetrahydropyridin-3,5-dicarbonsäurediester 1 – 6, darunter auch erstmals Derivate mit t-Butyl-esterfunktionen und 4-Hydroxytetrahydropyridin-3-carbonsäuremonoester 7 – 8. Dabei konnten vor allem Derivate mit der gewünschten nitroaromatischen Substitution in den Positionen 2 und 6 synthetisiert werden. Darüber hinaus wurden vielfältige Strukturabwandlungen dieser Substanzen in Form von verschiedenen 4-Piperidonderivaten ohne Esterfunktionen, deren Oximen sowie von 4-Hydroxychinoloncarbonsäureestern syn-thetisiert. Die hergestellten Derivate wurden In-vitro-Testungen an Plasmodium falciparum, Trypanosoma brucei brucei und Leishmania major unterzogen. Zusätzlich wurde die Zytotoxizität an der Makrophagen-Zelllinie J774.1 ermittelt. / The present work focused on the development and synthesis of inhibitors of deoxyhypusine hydroxylase (DOHH) that catalyzes an important step in the activation cascade of eukaryotic initiation factor 5A (eIF-5A). The inhibition of this metal-containing enzyme by small molecules chelating the essential catalytic iron at the active site of DOHH leads to an antiproliferative effect on parasites such as plasmodia, trypanosoma and leishmania. Derived from the antiplasmodial iron chelators and pyridine derivatives ciclopirox and mimosine more potent 2,6-diaryl-4-oxopiperidiniumcarboxylic acid mono- and -diester derivatives were developed. Its 4-piperidone skeleton served as a lead structure for the development of antiplasmodial and antitrypanosomal agents. Based on these lead structures it was possible to build a broad variety of 52 4-hydroxytetrahydropyridine-3,5-dicarboxylates 1 – 6 (for the first time including derivatives with t-butyl-ester functions) as well as 4-hydroxytetrahydropyridine-3-monocarboxylates 7 – 8 with varying substitution patterns by various modifications of the double mannich reaction. Thereby it was possible to synthesize derivatives with the advantageous nitro-aromatic substitution in position 2 and 6. Additionally structural modifications of these compounds such as 4-piperidones without ester functions, corresponding oximes and 4-hydroxychinolone carboxylates have been synthesized, too. The synthesized substances were tested against Plasmodium falciparum, Trypanosoma brucei brucei and Leishmania major. Furthermore their cytotoxity was determined using the macrophage cell line J774.1.
7

Stereoselektive Synthese verschiedener beta-Amino- und Microcos-Piperidinderivate : Versuche zur Totalsynthese von (+)-Microconin / Stereoselective synthesis of beta-amino- and Microcos-piperidines : An approach to the total synthesis of (+)-Microconine

König, Martin January 2009 (has links) (PDF)
Das Ziel dieser Arbeit war es, eine im Arbeitskreis entwickelte Methode zur Darstellung von unterschiedlich substituierten -Aminopiperidinen zu etablieren und zu verifizieren, indem unser Konzept einer Tandemreaktion zum Einsatz kommen sollte. Diese Reaktionssequenz sollte anschließend zur Totalsynthese von Microconin, einem aus Microcos paniculata isoliertem Alkaloid, genutzt werden. Den ersten Schritt in Richtung -Aminopiperidinderivate machte die Veresterung von L-Pyroglutaminsäure. Nach der Reduktion des Methylesters erfolgte die Aktivierung der Hydroxyfunktion des Alkohols in Form des Tosylats. Die Azideinführung resultierte aus einer nucleophilen Substitutionsreaktion, anschließend daran wurde der Lactam-Stickstoff mit Boc2O und einer katalytischen Menge DMAP geschützt. Das Lactam ist durch den Elektronenakzeptor aktiviert, so dass die Ringöffnung zum Methylester unter sehr milden Bedingungen und ohne weiteren Reinigungsschritt erfolgen konnte. Die Aminofunktion musste mit einer zweiten Schutzgruppe blockiert werden, die anschließende selektive Reduktion mit DiBAl-H in trockenem Ether verlief problemlos und lieferte mit dem Aldehyd das Edukt für Olefinierungen mittels verschiedener Wittig-Reaktionen. Dafür wurden stabilisierte Phosphonate hergestellt und in einer HWE-Reaktion mit dem Aldehyd umgesetzt. Die resultierenden elektronenarmen Olefine gingen dann die intramolekulare Cycloaddition mit dem Azidsubstituenten ein und bauten so den Grundkörper der -Aminopiperidinderivate in einer Reaktionssequenz auf, die wir als Tandem Wittig-[3+2]-Cycloaddition bezeichnen. Die Bildung der primären Triazoline erfolgte stereoselektiv, die Geschwindigkeit der Cycloaddition hing sowohl vom konjugierten Olefinsubstituenten als auch vom vicinalen Substituenten der Azidfunktion ab. Die Konfigurationsbestimmung erfolgte mittels NMR-Spektroskopie durch Analyse der Kopplungskonstanten und NOE-Messungen. Die asymmetrische Induktion der Cycloaddition konnte direkt für die Stereochemie am Piperidinring genutzt werden, indem, nach basischer Triazolin/Diazoamin Isomerisierung, gleich das Diazoamin hydriert wurde. Die Hydrierung der vinylogen Urethane, den Produkten aus der rhodiumkatalysierten Stickstoffextrusion, lieferte ein Diastereomerengemisch, wobei das Verhältnis der Diastereomere hauptsächlich vom Substitutionsgrad des exocyclischen Amins abhängig war. Überraschenderweise fand beim Sulfontriazolin keine Isomerisierung zum Diazoamin statt, daher musste für die Darstellung der Sulfonylmethyl--aminopiperidine eine alternative Route über ein Ketosulfon beschritten werden. Die Synthese von Microconin begann mit der Desoxygenierung von L-Rhamnose durch die sog. Fischer-Zach-Reaktion. Das Rhamnal wurde in einer drei Stufen Eintopfreaktion erhalten und mittels Perlinhydrolyse in den offenkettigen Aldehyd umgewandelt. Die Aktivierung der Hydroxyfunktion als Mesylat resultierte in einer äußerst empfindlichen Verbindung, die nur durch Verwendung des Lindlar-Katalysators mit zufrieden stellenden Ergebnis zum aliphatischen Aldehyd reduziert werden konnte. Eine bimolekulare nucleophile Substitutionsreaktion lieferte bei der Azideinführung zur Schlüsselverbindung sowohl die benötigte funktionelle Gruppe als auch die benötigte Inversion der Konfiguration. Die Tandem HWE-[3+2]-Cycloadditions-Reaktion führte auch bei dem Sulfontriazolin in eine Sackgasse, weshalb wieder eine alternative Syntheseroute eingeschlagen werden musste. Ausgehend von derselben Schlüsselverbindung gelang dies durch eine zinnkatalysierte Umsetzung mit stabilisierten Diazomethan zum Ketosulfon. Der Aufbau des Piperidin-Heterocyclus konnte dann wieder über eine intramolekulare Imin-Bildung des intermediären Amins mit dem Keton erzielt werden. Die diastereoselektive Hydrierung verlief unter Wasserstoffaddition von der sterisch weniger gehinderten -Seite und Ausbildung des all cis Substitutionsmusters. Nach dem erfolgreichen Aufbau des Heterocyclus mussten noch die beiden Heteroatome methyliert werden. Dabei wurden die besten Ergebnisse am Ringstickstoff mit der reduktiven Aminierung erzielt. Bei der anschließenden Abspaltung der Acetylgruppe zeigte sich erstmals, dass das Substitutionsmuster am Piperidinring nicht konfigurationsstabil war, da neben dem erwarteten Alkohol auch das Diastereomer isoliert wurde. Die genaue Ursache für die Epimerisierung nach der N-Methylierung konnte nicht geklärt werden. Die Einführung des Methoxy-Substituenten am Grundkörper erfolgte über eine Williamsonschen Ethersynthese. Bei den Versuchen zur Kupplung des Grundkörpers mit der Seitenkette 2,4-Nonadienal erwies sich der Zusatz von HMPT als förderlich. Weiterhin konnte die Ausbeute an -Hydroxysulfonen durch das Erwärmen der Reaktionsmischung gesteigert werden. In den Folgeschritten der Julia-Olefinierung blieben die Versuche zur Ausbildung der dreifach ungesättigten Struktureinheit in der Seitenkette des isolierten Naturstoffs jedoch erfolglos. / The aim of this work was to establish and verify a route to differently substituted and easy modifiable -amino piperidines using the tandem reaction concept established in our work group. This concept should then be used for the total synthesis of Microconin (3), an alkaloid of Microcos paniculata. In the first step to -amino piperidines L-pyroglutamic acid was converted to its methyl ester according to a modified literature procedure. The reduction of the ester was followed by the activation of the alcohol as its tosylate. The incorporation of azide was achieved by nucleophilic substitution and the lactam moiety was protected using Boc2O and a catalytic amount of DMAP. Protection by an electron acceptor activates the lactam functional group so ring opening with methoxide occurred smoothly at room temperature to yield the azidoester without further purification. The amino function had to be blocked by introduction of a second protecting group, selective reduction in anhydrous ether employing DiBAl-H performed without surprise and resulted in the aldehyde as starting material for olefinations by Wittig type reactions. Several stabilised phosphonates were synthesised and reacted with the aldehyde in the HWE-reaction. The electron poor olefins underwent intramolecular azide cycloaddition building up the -amino piperidine scaffold in a sequence we call tandem Wittig-[3+2]-Cycloaddition. The primary triazoline formation is often diastereoselective whereas the reaction rate depends on the conjugated olefine substituent as well as on stereoelectronic effects caused by the vicinal azido functional group. The resulting configuration was determined by NMR-spectroscopy using analysis of coupling constants and NOESY-techniques. Asymmetric induction in the cycloaddition can be utilised in the piperidine heterocycle after basic triazolin/diazoamine isomerisation and subsequent hydrogenation of the diazo compound. Hydrogenation of the vinylogous urethanes, products of the Rhodium mediated extrusion of nitrogen, lead to a diastereomeric mixture, whereas the diastereomeric ratio depended mostly on the substitution grade of the exocyclic amine. Surprisingly, the isomerisation of sulphono triazoline to the corresponding diazo amin did not happen, so an alternative approach over a ketosulphone to the sulfonylmethyl -amino piperidines had to be found. The synthesis of micrconine started with the deoxygenation of L-rhamnose in a Fischer-Zach reaction. The rhamnal was synthesised in a three step one pot reaction and the ring was opened by Perlin hydrolysis to the aldehyde. Activation of the hydroxyl function as a mesylate resulted in a very unstable compound, witch could only be reduced to the aliphatic aldehyde with sufficient results using the Lindlar catalyst. A bimoleculare nucleophilic substitution reaction of mesylate by azide led to the key intermediate with the necessary inversion of configuration. The tandem Wittig-[3+2]-Cycloaddition led with the sulphon triazoline in a dead end road. Therefore, an alternative synthetic route had to be found again. Starting from the key intermediate, the solution was a tin catalysed reaction with stabilised diazomethane leading to the ketosulphone. The construction of the heterocyclic piperidine core could then be accomplished by an intramoleculare imine formation of the amine intermediate with the ketone. Addition of hydrogen in the diastereoselective hydrogenation took place from the less hindered  face and resulted in an all cis configuration of the molecule. After successful creation of the heterocyclic frame, both hetero atoms had to be methylated. Best results at the ring nitrogen gave reductive aminations. That the substitution pattern of the piperidine heterocycle was configurationally unstable was observed the first time at the following deacetylation by isolating the diastereomeric alcohol besides the desired. The exact reason for the epimerisation after N-methylation could not be evaluated. The last step to the heterocyclic scaffold was the introduction of the methoxy function by a variant of the Williamson ether synthesis. In the coupling reactions of the piperidine core with the side chain unit 2,4-nonadienal the addition of HMPA proofed to be very effective. The yield of -hydroxysulphones could be further improved by slowly warming of the reaction mixture to room temperature. The following steps of the Julia-Olefination to build up the olefinic substructure in the side chain of the isolated natural compound remained without success.
8

Ex-Chiral-Pool-Synthese von 5-Aminopiperidylessigsäuren über eine Tandem-Wittig-1,3-dipolare Cycloaddition / ex-chiral-pool synthesis of 5-aminopiperidylaceticacid via tandem-Wittig-1,3-dipolar cycloaddition reaction

Güthlein, Markus January 2002 (has links) (PDF)
Ziel dieser Arbeit war es die Tandem-Wittig-1,3-dipolare Cycloaddition auf a-Hydroxyurethanderivate zu übertragen und so chirale, nichtracemische b-Amino-piperidylacetatderivaten in möglichst hoher Diastereomerenreinheit darzustellen. Diese Aminopiperidinderivate sollten mit 5-Chloro-2-methoxy-4-methylamino-benzoesäure gekoppelt werden, um die pharmakologische Wirksamkeit zu testen. Als Ausgangssubstanz wurde L-Pyroglutaminsäure (59) verwendet. Über eine dreistufige literaturbekannte Synthese wurden die beiden Halogenpyrrolidinon-derivate 62 und 63 hergestellt. Diese wurden über SN2-Reaktionen mit Natriumazid zu dem Azidopyrrolidinon 64 umgesetzt und durch die Einführung einer Boc-Schutzgruppe in die Verbindung 65 überführt. Die Hydroxyurethanderivate 66 erhält man auf zwei unterschiedlichen Wegen. Zum einen auf dem direkten Weg über eine DiBAl-H-Reduktion von 65 und zum anderen über eine Ringöffnung von 65 mit Natriummethanolat zu 68 und anschließender DiBAl-H-Reduktion. Mit 66 wurden das erste Mal a-Hydroxyurethanderivate einer Tandem Wittig 1,3-dipolaren Cycloaddition unterworfen. Man erhielt unter Essigsäurekatalyse ein Produktgemisch aus dem a,b-ungesättigten Ester 74, dem Triazolin 75 und dem Diazoester 76. Der isolierte a,b-ungesättigte Ester 74 konnte teilweise unter Essigsäaurekatalyse erneut zu den Cycloadditionsprodukten umgesetzt werden. Die Gleichgewichtseinstellung zwischen dem Triazolin 75 und dem Diazoester 76 konnte mit Triethylamin zugunsten des Diazoesters 76 verändert werden. Die Wittigreaktion verläuft unter thermodynamischer Kontrolle stereoselektiv zum E-konfigurierten a,b-ungesättigtem Ester 74. Auch die 1,3-dipolare Cycloaddition verläuft in einem äußerst hohem Maße diastereoselektiv. Durch 1H-NMR-spektroskopische Untersuchungen konnte man die Konfiguration der Cycloadditionsprodukte mit trans bestimmen. Eine Erklärung für die Stereoselektivität der 1,3-dipolaren Cycloaddition liefert die Betrachtung der sterischen und elektronischen Eigenschaften zweier hypothetischer sesselförmiger Konformere des a,b-ungesättigten Esters 74. Über eine katalytische Hydrierung des Diazoesters 76 konnte man einen sehr guten Zugang zu den trans-konfigurierten Piperidylacetaten 2R-78 etablieren. Das andere Diastereomer 2S-78 sollte nach Stickstoffextrusion aus 76 durch diastereoselektive Hydrierung des vinylogen Urethans 80 erhalten werden. Überraschenderweise entstand auch hier 2R-78 als Hauptprodukt. 2S-78 konnte nur als Nebenprodukt isoliert werden. Über eine reduktive Aminierung konnte man eine Methylgruppe am Ringstickstoff von 2R-78 bzw. 2S-78 einführen und erhielt 2R-81 bzw. 2S-81. Mit Moc2O konnte man die beiden Diastereomere 2R-78 und 2S-78 in die geschützten Piperidinderivate 2R-82 und 2S-82 überführen. Die Moc-geschützte Verbindung 2R-82 erhielt man außerdem über eine Synthese des Moc-geschützten Diazoesters 83 und anschließender katalytischen Hydrierung. Nach Abspalten der Boc-Schutzgruppe durch eine Umsetzung der Piperidine 2R-81 bzw. 2S-81 mit methanolischer Salzsäure konnte man die Dihydrochloride 2R-87 bzw. 2S-87 isolieren. Die freien Amine 2R-88 bzw. 2S-88 erhielt man nach Ausschütteln mit gesättigter Natriumcarbonatlösung. Die Piperidylacetate 2R-88 und 2S-88 konnten mit dem Benzoesäurederivat 79 über eine Amidkopplung verbunden werden. Diese Synthese war sowohl über den von GMEINER benutzten Weg, als auch über die Methode von MOHAPATRA und DATTA erfolgreich. Mit 2R-94 und 2S-94 konnten die ersten Nemonaprid-Analoga, die ein a-Aminopiperidingrundgerüst enthalten, dargestellt werden (Schema 47 und Schema 48). Das Piperidylacetat 2R-88 konnte man mit Lithiumaluminiumhydrid zu dem Piperidylethanol 99 umsetzten. / The goal of this studies was to apply the tandem-Wittig-1,3-dipolar cycloaddition to cyclic acceptor substituted a-hydroxyurethanes. Chiral, non racemic 2-alkyl-5-aminopiperidines should be accessible in high diastereomeric excess by using this reaction. The a-aminopiperidine derivatives should be reacted with 5-chloro-2-methoxy-4-methylaminobenzoic acid to the amides and the pharmacological activities of the achieved compounds should be tested. L-pyroglutamic acid was used as a starting material. The synthesis of the key intermediate 66 starts with a three step reaction sequence to the halogenopyrrolidine derivatives 62 and 63. The introduction of azide functionality by nucleophilic substitution to the azidopyrrolidine derivative 64 followed by the protection of the amide group with Boc2O yielded 65. The hydroxyurethane derivative 66 was obtained in two different ways, namely directly by using a DiBAl-H reducing of 65 and on the other hand by ring opening reaction of 65 with sodium methoxide to 68 followed by a DiBAl-H reduction. For the first time the a-hydroxyurethanes 66 as starting material for the tandem-Wittig-1,3-dipolar cycloaddition reaction was applied. A product mixture of the a,b-unsaturated azido ester 74, the triazoline 75 and the diazo ester 76 was achieved by using acetic acid as a catalyst. A mixture of the cycloaddition products could be obtained again by treatment of the isolated a,b-unsaturated azido ester 74 with acetic acid. Rearrangement of the triazoline 75 to the corresponding diazo ester 76 was achieved by addition of triethylamine. Only the E-configurated compound 74 was obtained. This leads to the conclusion that the Wittig reaction is under thermodynamic control. The cycloaddition shows excellent diastereoselectivity. By using 1H-NMR-spectroscopy the trans-configurated cycloaddition product as the single isomer were determined. An explanation for the diastereoselectivity of the 1,3-dipolar cycloaddition is given by a consideration of the steric and electronic properties of two open chain products namely the a,b-unsaturated azido ester 74. An efficient synthetic pathway to the piperidine derivative 2R-78 was established by catalytic hydrogenation of the diazo ester 76. The other diastereomer should be obtained by Rh-mediated extrusion of nitrogen and distereoselective hydrogenation of the vinylogous urethane 80. To our surprise the piperidine derivative 2R-78 was the main product. 2S-78 could only be obtained as the minor stereoisomer. A reductive amination was the most efficient way to introduce a methyl group to the ring nitrogen atom. Introducing Moc2O lead to the protected piperidine derivatives 2R-82 and 2S-82. The protected piperidine derivative 2R-78 was also obtained by the synthesis of the Moc-protected diazo ester 83 and following hydrogenation. After cleavage of the Boc-protecting groups with methanolic hydrogen chloride the dihydrochlorides 2R-87 and 2S-87 were obtained. The free amines 2R-88 and 2S-88 could be coupled with the benzoic acid derivate 79 by using different coupling methods e.g. the method of MOHAPATRA and DATTA. For the first time with 2R-94 and 2S-94 Nemonaprid analogous, which include a ƒÒ-aminopiperidine structure, were obtained.
9

Ringumlagerungsmetathesen zu Azacyclen

Rodriguez y Fischer, Nicolas. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2004--Berlin.
10

Versuche zur Totalsynthese von Pseudodistomin C und E - Ein neuer Syntheseweg / An Approach to the Total Synthesis of Pseudodistomine C and E - A New Synthetic Pathway

Ries, Stefan January 2009 (has links) (PDF)
Die Pseudodistomine gehören zu den ersten Piperidinalkaloiden marinen Ursprungs, die 1987 von Ishibashi et al. aus der Tunikate (Ascidie) Pseudodistoma kanoko isoliert wurden. Aus der gleichen Tunikate wurde 1995 das Pseudodistomin C isoliert. Die amphiphilen Piperidinalkaloide zeigen eine Antitumor-Aktivität gegen bestimmte Mäuseleukämiezellen, wobei Pseudodistomin C auch eine Cytotoxizität gegen menschliche HeLa-abgeleitete Krebszellen KB aufweist. In der Einleitung wird ausführlich auf Vorkommen, Struktur, Biogenese, pharmakologische Perspektiven und literaturbekannten Synthesen dieser amphiphilen Piperidin-Alkaloide eingegangen. Im Hauptteil wird zunächst eine gescheiterte Synthese ausgehend von D-Ribose über das Konzept einer Tandem Wittig-[3+2]-Cycloaddition beschrieben. Daraufhin wird ein völlig neuer Syntheseweg vorgestellt, welcher den formalen Aufbau des Pseudodistomin C über einen bekannten Piperidin-Grundkörper ermöglich. Des weiteren konnte das vollständig geschützte Pseudodistomin E synthetisiert werden. / Pseudodistomines belong to the first known piperidine alkaloids of marine origin, isolated by Ishibashi et al. from the tunicate (ascidie) pseudodistoma kanoko in 1987. From the same tunicate Pseudodistomin C was isolated in 1995. The amphiphilic piperidin alkaloids show an antitumor activity against certain leukemic cells derived from mice, whereas Pseudodistomin C also exhibits an antitumor activity against human HeLa-derived cancer cells KB. The introduction goes into details about occurrence, structure, biogenesis, pharmacological perspectives and literature known synthesis of these amphiphilic piperidine alkaloids. The main part starts with a failed synthesis based on D-ribose by the concept of a tandem wittig-[3+2]-cycloaddition. Consequently an entirely new synthesis pathway is presented, which enables the formal buildup of Pseudodistomin C by a known piperidine compound. Furthermore I was able to synthesize the fully protected Pseudodistomin E.

Page generated in 0.1023 seconds