Spelling suggestions: "subject:"plant graphs"" "subject:"plans graphs""
1 |
Tutte trails of graphs on surfacesSinna, Adthasit January 2017 (has links)
A Tutte trail T of a graph G is a trail such that every component of GnV (T) has at most three edges connecting it to T. In 1992, Bill Jackson conjectured that every 2-edge-connected graph G has a Tutte closed trail. In this thesis, we show that Jackson's conjecture is true when G is embedded on the plane and the projective plane. We also give some partial results when G is embedded on the torus.
|
2 |
Almost Regular Graphs And Edge Face Colorings Of Plane GraphsMacon, Lisa 01 January 2009 (has links)
Regular graphs are graphs in which all vertices have the same degree. Many properties of these graphs are known. Such graphs play an important role in modeling network configurations where equipment limitations impose a restriction on the maximum number of links emanating from a node. These limitations do not enforce strict regularity, and it becomes interesting to investigate nonregular graphs that are in some sense close to regular. This dissertation explores a particular class of almost regular graphs in detail and defines generalizations on this class. A linear-time algorithm for the creation of arbitrarily large graphs of the discussed class is provided, and a polynomial-time algorithm for recognizing graphs in the class is given. Several invariants for the class are discussed. The edge-face chromatic number χef of a plane graph G is the minimum number of colors that must be assigned to the edges and faces of G such that no edge or face of G receives the same color as an edge or face with which it is incident or adjacent. A well-known result for the upper bound of χef exists for graphs with maximum degree Δ ≥ 10. We present a tight upper bound for plane graphs with Δ = 9.
|
3 |
BLINK : a language to view; Recognize; Classify and manipulate 3D-spacesDidier Lins, Lauro January 2007 (has links)
Made available in DSpace on 2014-06-12T18:28:51Z (GMT). No. of bitstreams: 2
arquivo4264_1.pdf: 8529909 bytes, checksum: 0a958aa0c57b9a6b54d2a7542dbf9476 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2007 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Um blink é um grafo plano onde cada aresta ou é vermelha ou é verde. Um espaço 3D ou,
simplesmente, um espaço é uma variedade 3-dimensional conexa, fechada e orientada. Neste
trabalho exploramos pela primeira vez em maiores detalhes o fato de que todo blink induz um
espaço e todo espaço é induzido por algum blink (na verdade por infinitos blinks). Qual o
espaço de um triângulo verde? E de um quadrado vermelho? São iguais? Estas perguntas
foram condensadas numa pergunta cuja busca pela resposta guiou em grande parte o trabalho
desenvolvido: quais são todos os espaços induzidos por blinks pequenos (poucas arestas)?
Nesta busca lançamos mão de um conjunto de ferramentas conhecidas: os blackboard framed
links (BFL), os grupos de homologia, o invariante quântico de Witten-Reshetikhin-Turaev, as
3-gems e sua teoria de simplificação. Combinamos a estas ferramentas uma teoria nova de
decomposição/composição de blinks e, com isso, conseguimos identificar todos os espaços
induzidos por blinks de até 9 arestas (ou BFLs de até 9 cruzamentos). Além disso, o nosso
esforço resultou também num programa interativo de computador chamado BLINK. Esperamos
que ele se mostre útil no estudo de espaços e, em particular, na descoberta de novos invariantes
que complementem o invariante quântico resolvendo as duas incertezas deixadas em aberto
neste trabalho
|
Page generated in 0.0682 seconds