• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Previsão de Vazões Naturais Diárias Afluentes ao Reservatório da UHE Tucuruí Utilizando a Técnica de Redes Neurais Artificiais / Daily natural incoming flow to the reservoir Tucuruí using the technique of artificial neural networks

FERREIRA, Carlos da Costa 05 September 2012 (has links)
Made available in DSpace on 2014-07-29T15:08:18Z (GMT). No. of bitstreams: 1 Previsao de Vazoes Naturais Diarias.pdf: 3835466 bytes, checksum: f927e5c8c3a89c73430512243b55c36c (MD5) Previous issue date: 2012-09-05 / The forecast of natural flows to hydroelectric plant reservoirs is an essential input to the planning and programming of the SIN´s operation. Various computer models are used to determine these forecasts, including physical models, statistical models and the ones developed with the RNA´s techniques. Currently, the ONS performs daily forecasts of natural flows to the UHE Tucuruí based on the univariate stochastic model named PREVIVAZH, developed by Electric Energy Research Center - Eletrobras CEPEL. Throughout the last decade, several papers have shown evolution in the application of neural networks methodology in many areas, specially in the prediction of flows on a daily, weekly and monthly basis. The goal of this dissertation is to present and calibrate a model of natural flow forecast using the RNA´s methodology, more specifically the NSRBN (Non-Linear Sigmoidal Regression Blocks Networks) (VALENCA; LUDERMIR, 2001), on a time lapse from 1 to 12 days forward to the Tucuruí Hydroelectric Plant, considering the hydrometric stations data located upstream from it s reservoir. In addition, a comparative analysis of results found throughout the calibrated neural network and the ones released by ONS is performed. The results show the advantage of the methodology of artificial neural networks on autoregressive models. The Mean Absolute Percentage Error - MAPE values obtained were, on average, 48 % lower than those released by the ONS. / A previsão de vazões naturais aos reservatórios das usinas hidrelétricas é insumo fundamental para o planejamento e operação do SIN. Diversos modelos são utilizados na determinação dessas previsões, entre os quais podem ser citados os modelos físicos, os estatísticos e aqueles baseados na técnica de Redes Neurais Artificiais. Atualmente, o ONS realiza as previsões diárias de vazões naturais para a Usina Hidrelétrica Tucuruí com base no modelo estocástico univariado denominado PREVIVAZH, desenvolvido pelo CEPEL. Ao longo da última década, muitos trabalhos têm mostrado a evolução da aplicação da metodologia de Redes Neurais Artificiais em diversas áreas e em particular na previsão de vazões naturais, para intervalos de tempo diários, semanais e mensais. O objetivo deste trabalho foi calibrar e avaliar um modelo de previsão de vazões naturais, utilizando a metodologia de RNA, mais especificamente as redes construtivas do tipo NSRBN(Non-Linear Sigmoidal Regression Blocks Networks) (VALENCA; LUDERMIR, 2001), no horizonte de 1 até 12 dias à frente, para a Usina Hidrelétrica Tucuruí, considerando as informações advindas de postos hidrométricos localizados à montante do seu reservatório. Adicionalmente, foi realizada uma análise comparativa dos resultados encontrados pela rede neural calibrada e aqueles obtidos e divulgados pelo ONS. Os resultados obtidos mostram a vantagem da metodologia de redes neurais artificiais sobre os modelos auto-regressivos. Os valores do Erro Percentual Médio Absoluto - MAPE foram, em média, 48% inferiores aos divulgados pelo ONS.

Page generated in 0.1222 seconds