• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FE safety analysis of a high speed wood planer cutter. An alternative method to achieve the requirements of EN847 standard / FE safety analysis of a high speed wood planer cutter. An alternative method to achieve the requirements of EN847 standard

Marques Novo, Francisco José, Saraiva Rézio, Henrique Manuel January 2004 (has links)
<p>In the last decades, high speed cutting has become an attractive technology in the wood industry. The possibility of reducing global costs in addiction with an increase in productivity, were the main reasons for the enlargement of the use of this technology. </p><p>As usual, these advantages are accompanied by disadvantages that should be carefully analyzed. If on the one hand cutting forces are reduced with increasing cutting speeds, on the other hand, the centrifugal forces affecting the tool are higher. Exposed to such high loads, there is a considerable risk of tool failure that embeds hazards for both machine and workers. </p><p>To prevent the risk of accidents and to guarantee safety in use, security standards have been implemented in industrial fields, imposing specific experimental tests, with defined procedure modes. Accordingly with these standards, the results obtained through the tests should fall inside limited ranges. The experimental tests suggested on the European Standards are intended to simulate the real working conditions of a rotating cutting tool, where extreme centrifugal forces are imposed by the high values of speed. Although their main importance, these destructive tests aren’t always practicable. It happens, for instance, with tools produced in small batch sizes, or as an ascertainment for the fail-critical speed during the development stage, or even due to physical incompatibilities between the tool and the laboratory testmachines. </p><p>The high value of weight associated with the cutting tool prototype developed and patented by Verktygs Larsson AB was an impediment to run the laboratorial tests specified by the standards, forcing the company to find a new way to assure the safety requirements of their product. </p><p>The main goal of this project was the development of an alternative method based on finite element theory to perform a safety analysis to the prototype of a wood cutter. This tool is used as a component in high speed planers. </p><p>In addiction to this primary objective, some considerations were made about other available models, with increased dimensions or even with different parameters. If there was the need, design changes could be assumed in order to guarantee that the tool reached the requisites of the safety standards. Considering an optimization effort, material changes would also be considered, to aim in the direction of reducing the tool weight and the consequent centrifugal forces.</p>
2

FE safety analysis of a high speed wood planer cutter. An alternative method to achieve the requirements of EN847 standard / FE safety analysis of a high speed wood planer cutter. An alternative method to achieve the requirements of EN847 standard

Marques Novo, Francisco José, Saraiva Rézio, Henrique Manuel January 2004 (has links)
In the last decades, high speed cutting has become an attractive technology in the wood industry. The possibility of reducing global costs in addiction with an increase in productivity, were the main reasons for the enlargement of the use of this technology. As usual, these advantages are accompanied by disadvantages that should be carefully analyzed. If on the one hand cutting forces are reduced with increasing cutting speeds, on the other hand, the centrifugal forces affecting the tool are higher. Exposed to such high loads, there is a considerable risk of tool failure that embeds hazards for both machine and workers. To prevent the risk of accidents and to guarantee safety in use, security standards have been implemented in industrial fields, imposing specific experimental tests, with defined procedure modes. Accordingly with these standards, the results obtained through the tests should fall inside limited ranges. The experimental tests suggested on the European Standards are intended to simulate the real working conditions of a rotating cutting tool, where extreme centrifugal forces are imposed by the high values of speed. Although their main importance, these destructive tests aren’t always practicable. It happens, for instance, with tools produced in small batch sizes, or as an ascertainment for the fail-critical speed during the development stage, or even due to physical incompatibilities between the tool and the laboratory testmachines. The high value of weight associated with the cutting tool prototype developed and patented by Verktygs Larsson AB was an impediment to run the laboratorial tests specified by the standards, forcing the company to find a new way to assure the safety requirements of their product. The main goal of this project was the development of an alternative method based on finite element theory to perform a safety analysis to the prototype of a wood cutter. This tool is used as a component in high speed planers. In addiction to this primary objective, some considerations were made about other available models, with increased dimensions or even with different parameters. If there was the need, design changes could be assumed in order to guarantee that the tool reached the requisites of the safety standards. Considering an optimization effort, material changes would also be considered, to aim in the direction of reducing the tool weight and the consequent centrifugal forces.

Page generated in 0.1084 seconds