• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulations of planet migration driven by the scattering of smaller bodies

Kirsh, David Robert 17 September 2007 (has links)
Planet migration is an important part of the formation of planetary systems, both in the Solar system and in extrasolar systems. When a planet scatters nearby comet- and asteroid-size bodies called planetesimals, a significant angular momentum exchange can occur, enough to cause a rapid, self-sustained migration (change of semi-major axis) of the planet. This migration has been studied for the particular case of the four outer planets of the Solar System, but is not well understood in general. This thesis used the Miranda computer simulation code to perform a broad parameter-space survey of the physical variables that determine the migration of a single planet in a planetesimal disk. A simple model presented within matched well with the dependencies of the migration rate for low-mass planets in relatively high-mass disks. When the planet's mass exceeded that of the planetesimals within a few Hill radii, the migration rate decreased strongly with planet mass. Other trends were identified with the root-mean-squared eccentricity of the planetesimal disk, the mass of the particles dragged by the planet in the corotation region, and the index of the surface density power law. The issue of resolution was also addressed, and it was shown that many previous works in this field may have suffered from being under-resolved. The trends were discussed in the context of an analysis of the scattering process itself, which was performed using a large simulation of massless planetesimals. In particular, a bias in scattering timescales on either side of the planet's orbit leads to a very strong tendency for the planet to migrate inwards, instead of outwards. The results of this work show that planet migration driven by planetesimal scattering should be a widespread phenomenon, especially for low-mass planets such as still-forming protoplanets. The simple model provided here, augmented by many more subtle effects, will prove essential to any future work in this underestimated field. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2007-09-09 14:28:46.501
2

Numerical Simulations of Planetesimal Formation

Rucska, Josef James January 2022 (has links)
A long-standing question in planet formation is the origin of planetesimals, the kilometre-sized precursors to protoplanets. Asteroids and distant Kuiper Belt objects are believed to be remnant planetesimals from the beginnings of our Solar system. A leading mechanism for explaining the formation of these bodies directly from centimetre-sized dust pebbles is the streaming instability (SI). Using high resolution numerical simulations of protoplanetary discs, we probe the behavior of the non-linear SI and planetesimal formation in previously unexplored configurations. Small variations in initial state of the disc can lead to different macroscopic outcomes such as the total mass converted to planetesimals, or the distribution of planetesimal masses. These properties can vary considerably within large simulations, or across smaller simulations re-run with different initial perturbations. However, there is a similar spread in outcomes between multiple smaller simulations and between smaller sub-regions in larger simulations. In small simulations, filaments preferentially form rings while in larger simulations they are truncated. Larger domains permit dynamics on length scales inaccessible to the smaller domains. However, the overall mass concentrated in filaments across various length scales is consistent in all simulations. Small simulations in our suite struggle to resolve dynamics at the natural filament separation length scale, which restricts the possible filament configurations in these simulations. We also model discs with multiple grain species, sampling a size distribution predicted from theories of grain coagulation and fragmentation. The smallest grains do not participate in the formation of planetesimals or filaments, even while they co-exist with dust that readily forms such dense features. For both single-grain and multiple-grain models, we show that the clumping of dust into dense features results in saturated thermal emission, requiring an observational mass correction factor that can be as large as 20-80\%. Finally, we present preliminary work showing that the critical dust-to-gas mass ratio required to trigger the SI can vary between 3D and 2D simulations. / Thesis / Doctor of Philosophy (PhD)
3

On the Dynamics of Plate Tectonics: Multiple Solutions, the Influence of Water, and Thermal Evolution

Crowley, John 08 August 2012 (has links)
An analytic boundary layer model for thermal convection with a finite-strength plate and depth-dependent viscosity is developed. The model includes a specific energy balance for the lithosphere and accounts for coupling between the plate and underlying mantle. Multiple solutions are possible with three solution branches representing three distinct modes of thermal convection. One branch corresponds to the classic boundary layer solution for active lid plate tectonics while two new branches represent solutions for sluggish lid convection. The model is compared to numerical simulations with highly temperature dependent viscosity and is able to predict both the type of convection (active, sluggish, or stagnant lid) as well as the presence of single and multiple solution regimes. The existence of multiple solutions suggests that the mode of planetary convection may be history dependent. The dependence of mantle viscosity on temperature and water concentration is found to introduce a strong dynamic feedback with plate tectonics. A dimensionless parameter is defined to quantitatively evaluate the relative strength of this feedback and demonstrates that water and heat transport may be equally important in controlling present-day platemantle dynamics for the Earth. A simple parameterized evolution model illustrates the feedback and agrees well with our analytic results. This suggests that a simple relationship may exist between the rate of change of water concentration and the rate of change of temperature in the mantle. This study concludes by investigating the possibility of a magnetic field dynamo in early solar system planetesimals. The thermal evolution of planetesimals is modeled by considering melting, core formation, and the onset of mantle convection and then employing thermal boundary layer theory for stagnant lid convection (if possible) to determine the cooling rate of the body. We assess the presence, strength and duration of a dynamo for a range of planetesimal sizes and other parameters. We find that a minimum radius of O(500) km is required for a thermally driven dynamo of duration O(10) My. The dependence of the results on model parameters is made explicit through the derivation of an analytic solution. / Earth and Planetary Sciences
4

Exocomets at large orbital radii and their inward transport in debris discs

Marino Estay, Sebastián January 2018 (has links)
Planetary systems are not only composed of planets, but also of km-sized rocky and icy bodies that are confined within belts similar to the Asteroid and Kuiper belt in the Solar System. Mutual collisions within these belts grind down solids producing dust and giving rise to debris discs. Primitive asteroids and comets likely played a major role in the emergence of life on Earth through their delivery of volatiles early in the lifetime of our planet. Cometary impacts, therefore, could be a necessary condition for the emergence of life in exoplanets and the study of debris discs essential to determine the ubiquity of such phenomenon. Moreover, exocometary discs provide a unique window into the origins and outer regions of planetary systems as comets do within our Solar System. Initially, in Chapter 1 I present an overview of the study of exoplanetary systems, focusing on debris discs. I discuss the basics of planet formation, its connection with debris discs, and how these evolve and interact with planets. I also describe how we observe these discs and probe their volatile component that is locked inside exocomets, and some evidence supporting the idea of exocomets venturing into the inner regions of planetary systems. Then, in Chapters 2, 3, 4 and 5 I present new ALMA observations of the systems HD 181327, η Corvi, the multiplanet system 61 Vir and HD 107146, which host debris discs. In the first two, I highlight the derivation of the density structure of their discs and the detection of volatiles being released by exocomets; while in the third and fourth I compare the observations with simulations, which I use to set constraints on the underlying planetesimal distribution and mass and orbital distance of unseen planets. Finally, in Chapter 6 I present result obtained from N-body simulations to study the process of inward transport of comets by a multiplanetary system and how these can deliver material to inner planets and explain the frequently observed exozodiacal dust. To conclude, in Chapter 7 I summarise the results and conclusions of this dissertation and discuss ongoing and future work.

Page generated in 0.0702 seconds