• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The planktic foraminiferal response to the Latest Danian Event (62.2 Ma)

Jehle, Sofie 24 July 2019 (has links)
The Paleocene and early Eocene (~66–40 Ma) is characterised by a number of transient warming events, also named hyperthermals. A more recent candidate for a hyperthermal of Paleocene age is the Latest Danian Event (LDE, ~62.2 Ma). So far, the LDE was only poorly explored in few deep-sea records and Tethyan shelf settings. Planktic data characterizing the surface ocean were almost completely missing. In this thesis, it was studied whether the LDE satisfies the requirements for a hyperthermal and the impact on the planktic foraminfera fauna. Samples from three late Danian deep-sea cores (ODP Sites 1210 and 1262, IODP Site U1407) and one Tethyan shelf section (Qreiya 3, Egypt) were investigated in rather high resolution, which, for the first time, allowed to unravel the impact of the LDE, the evolution of the ocean structure and planktic foraminiferal species abundances on an almost global scale. δ18O paleothermometry revealed a temperature rise of 2–4°C affecting the entire water column in all three depth habitats (sea floor, subsurface and surface ocean) and a contemporary negative carbon isotope excusion of 0.6–0.9 ‰ indicates carbon cycle perturbations. Changes in the planktic foraminiferal assemblages indicate a global biotic response to the LDE.
2

Response of pteropod and related faunas to climate change and ocean acidification

Wall-Palmer, Deborah January 2013 (has links)
Recent concern over the effects of ocean acidification upon calcifying organisms in the modern ocean has highlighted the aragonitic shelled thecosomatous pteropods as being at a high risk. Laboratory studies have shown that increased pCO2, leading to decreased pH and low carbonate concentrations, has a negative impact on the ability of pteropods to calcify and maintain their shells. This study presents the micropalaeontological analysis of marine cores from the Caribbean Sea, Mediterranean Sea and Indian Ocean. Pteropods, heteropods and planktic foraminifera were picked from samples to provide palaeoenvironmental data for each core. Determination of pteropod calcification was made using the Limacina Dissolution Index (LDX) and the average shell size of Limacina inflata specimens. Pteropod calcification indices were compared to global ice volume and Vostok atmospheric CO2 concentrations to determine any associations between climate and calcification. Results show that changes in surface ocean carbonate concentrations throughout the Late Pleistocene did affect the calcification of thecosomatous pteropods. These effects can be detected in shells from marine sediments that are located well above the aragonite lysocline and have not undergone post-depositional dissolution. The results of this study confirm the findings of laboratory studies, showing a decrease in calcification during interglacial periods, when surface ocean carbonate concentrations were lower. During glacial periods, calcification was enhanced due to the increased availability of carbonate. This trend was found in all sediments studied, indicating that the response of pteropods to past climate change is of global significance. These results demonstrate that pteropods have been negatively affected by oceanic pH levels relatively higher and changing at a lesser rate than those predicted for the 21st Century. Results also establish the use of pteropods and heteropods in reconstructing surface ocean conditions. The LDX is a fast and appropriate way of determining variations in surface water carbonate saturation. Abundances of key species were also found to constrain palaeotemperatures better than planktic foraminifera, a use which could be further developed.
3

Rôle des foraminifères planctoniques dans le cycle du carbone marin des hautes latitudes (Océan Indien Austral) / The role of planktonic foraminifera in the marine carbon cycle at high latitudes (Southern Indian Ocean).!!

Meilland, Julie 26 November 2015 (has links)
Les foraminifères planctoniques vivants (LPF) contribuent à la pompe biologique du carbone océanique en générant des flux de Corg (cytoplasme) et de Cinorg (test calcaire). Dans cette étude, la morphométrie des tests, les abondances et les compositions spécifiques des assemblages de LPF dans l'océan Indien Sud (30°S-60°S, 50°E-80°E), ont été caractérisées à partir de la collecte par filet à plancton stratifié (Multinet) sur 19 stations échantillonnées pendant trois étés consécutifs (2012- 2014). En démontrant l'efficacité d'échantillonnage du Continuous Plankton Recorder pour spatialiser les données observées en 19 stations, l’étude de la dynamique de population des LPF montre l'effet de la position des fronts sur la production des LPF. Pour mieux contraindre l'impact des LPF dans la pompe biologique du carbone des hautes latitudes, la biomasse protéique et la masse calcique de plus de 2000 foraminifères ont été mesurées. Les différences de biomasse protéique et de poids normalisé par la taille entre années, espèces et masses d'eau suggèrent que les paramètres environnementaux affectent la production de Corg et de Cinorg des LPF. Le rôle des LPF sur la pompe biologique de carbone marin dépend des conditions hydrologiques et trophiques du milieu. Le rapport Corg/Cinorg est très différent selon les espèces considérées. L'applicabilité des tests de foraminifères planctoniques comme proxy de paléopompe du carbone dans les hautes latitudes dépendrait donc de l'effet exercé par les variations des conditions écologiques, et de la composition de l’assemblage. Cette étude propose une première estimation des budgets Corg et Cinorg produits par les LPF dans l’Océan Indien Austral. / Planktonic foraminifera contribute to the marine biological carbon pump by generating organic (cytoplasm) and inorganic (shell) carbon fluxes. In this study, we characterized LPF total abundances, assemblages and test morphometry (minimum diameter) along 19 stations sampled by stratified plankton net (Multinet), during three consecutive austral summers (2012-2014) in the Southern Indian Ocean (30°S-60°S, 50°E-80°E). By demonstrating the efficiency of CPR for LPF sampling, we analysed population dynamic between 19 multinet sampling stations, showing the effect of frontal position on LPF production. To better constrain the impact of those organisms in the biological carbon pump at high latitudes, we have quantified the individual protein-biomass and test calcite mass of more than 2000 LPF. Differences in size-normalized protein-biomass and in size-normalized weight between years, species, and water bodies suggest that environmental parameters affect the production of planktonic foraminifera organic and inorganic carbon to varying degrees. Consequently, planktonic foraminifera are assumed to affect the biological carbon pump, depending on ecological conditions and biological prerequisites. The applicability of planktonic foraminifera tests as proxy of the past biological carbon pump in high latitudes would hence critically depend on the effect exerted by changing in ecological conditions, and the presence of different species. This study proposes a first estimation of planktonic foraminifera Corg and Cinorg standing stock and fluxes in the Southern Indian Ocean.
4

Late Campanian-Maastrichtian Planktic Foraminiferal Biostratigraphy, Taxonomy, and Isotope Paleoecology of Odp Leg 198 Sites 1209 and 1210, Shatsky Rise

Clark, Kendra R 01 January 2012 (has links) (PDF)
Well-preserved and diverse assemblages of late Campanian-Maastrichtian age (76.5-65.5 Ma) planktic foraminifera from Ocean Drilling Program Sites 1209 and 1210 on Shatsky Rise provide an excellent source of data to better understand the environmental and biotic changes of the end-Cretaceous Period in the tropical Pacific. A thorough taxonomic and biostratigraphic study of planktic foraminifera has revealed significant differences in species ranges when compared to detailed studies from the western North Atlantic and eastern South Atlantic. These observations are attributed to site locations with different ocean current and productivity conditions. During the globally recognized “mid-Maastrichtian Event”, inoceramid clams, rare at Shatsky Rise, dramatically increased (~69.3 Ma) before suddenly going extinct (69.1 Ma). This Inoceramid Acme Event (IAE), occurs during high sedimentation rates (~21.8-m/myr) and is indicated in planktic foraminifera by a 0.50‰ positive shift in δ18O values (~2 °C cooling), a 0.24‰ negative shift in δ13C values of and high species richness. A simultaneous decrease in both the δ18O and δ13C gradients between surface and thermocline dwelling planktic foraminifera indicate the IAE was possibly initiated by an increase in surface productivity due to the upwelling of cooler, nutrient-rich waters. A dissolution event was identified at ~66.1 Ma lasting to the Cretaceous/Paleogene boundary (65.5 Ma) and is characterized by chalky, highly fragmented planktic foraminifera, increased dissolution of larger Globotruncanids, increased small (< 63 μm) planktic foraminifera, large and increasingly abundant benthic foraminifera, a sharp decrease in species richness and increased sedimentation rates (~19.9-m/myr). This event follows a transitional interval at ~66.7 Ma where preservation is highly variable. The dissolution event, reported in previous studies at Shatsky Rise (Caron, 1975; Premoli Silva et al., 2005), is not reported in the North and South Atlantic but may help to explain the high diachroneity in species occurrences between ocean basins. These events may indicate that the calcite carbonate compensation depth (CCD) shoaled to shallower depths than previously reported (Theirstein, 1979) due to changing deep or intermediate water mass sources. Alternatively, the timing the dissolution is approximately coincident with the main pulse of Deccan Trap volcanism on the Indian subcontinent suggesting a possible link through ocean acidification.

Page generated in 0.0914 seconds